出 处:《Frontiers of Environmental Science & Engineering》2014年第5期792-796,共5页环境科学与工程前沿(英文)
基 金:Acknowledgements This project was supported by the National Nature Science Foundation of China (Grant No. 71373141), and a special fund of State Key Joint Laboratory of Environmental Simulation and Pollution Control (No. llZ02ESPCT).
摘 要:The amount of spent rechargeable lithium batteries (RLBs) is growing rapidly owing to wide application of these batteries in portable electronic devices and electric vehicles, which obliges that spent RLBs should be handled properly. Identification of spent RLBs can supply fundamental information for spent RLBs recycling. This study aimed to determine the differences of physical components and chemical compositions among various spent RLBs. All the samplings of RLBs were rigorously dismantled and measured by an inductive coupled plasma atomic emission spectrometer. The results indicate that the average of total weight of the separator, the anode and the cathode accounted for over 60% of all the RLBs. The weight ratio of valuable metals ranged from 26% to 76%, and approximately 20% of total weight was Cu and Al. Moreover, no significant differences were found among different manufacturers, applications, and electrolyte types. And regarding portable electronic devices, there is also no significant difference in the Co-Li concentration ratios in the leaching liquid of RLBs.The amount of spent rechargeable lithium batteries (RLBs) is growing rapidly owing to wide application of these batteries in portable electronic devices and electric vehicles, which obliges that spent RLBs should be handled properly. Identification of spent RLBs can supply fundamental information for spent RLBs recycling. This study aimed to determine the differences of physical components and chemical compositions among various spent RLBs. All the samplings of RLBs were rigorously dismantled and measured by an inductive coupled plasma atomic emission spectrometer. The results indicate that the average of total weight of the separator, the anode and the cathode accounted for over 60% of all the RLBs. The weight ratio of valuable metals ranged from 26% to 76%, and approximately 20% of total weight was Cu and Al. Moreover, no significant differences were found among different manufacturers, applications, and electrolyte types. And regarding portable electronic devices, there is also no significant difference in the Co-Li concentration ratios in the leaching liquid of RLBs.
关 键 词:rechargeable lithium batteries E-WASTE physical components difference analysis RECYCLING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...