Method of data cleaning for network traffic classification  被引量:1

Method of data cleaning for network traffic classification

在线阅读下载全文

作  者:WANG Ruo-yu LIU Zhen ZHANG Ling 

机构地区:[1]School of Computer Science and Engineering, South China University of Technology

出  处:《The Journal of China Universities of Posts and Telecommunications》2014年第3期35-45,共11页中国邮电高校学报(英文版)

基  金:supported by the National Basic Research Program of China(2009CB320505)

摘  要:Network traffic classification aims at identifying the application types of network packets. It is important for Internet service providers (ISPs) to manage bandwidth resources and ensure the quality of service for different network applications However, most classification techniques using machine learning only focus on high flow accuracy and ignore byte accuracy. The classifier would obtain low classification performance for elephant flows as the imbalance between elephant flows and mice flows on Internet. The elephant flows, however, consume much more bandwidth than mice flows. When the classifier is deployed for traffic policing, the network management system cannot penalize elephant flows and avoid network congestion effectively. This article explores the factors related to low byte accuracy, and secondly, it presents a new traffic classification method to improve byte accuracy at the aid of data cleaning. Experiments are carried out on three groups of real-world traffic datasets, and the method is compared with existing work on the performance of improving byte accuracy. Experiment shows that byte accuracy increased by about 22.31% on average. The method outperforms the existing one in most cases.Network traffic classification aims at identifying the application types of network packets. It is important for Internet service providers (ISPs) to manage bandwidth resources and ensure the quality of service for different network applications However, most classification techniques using machine learning only focus on high flow accuracy and ignore byte accuracy. The classifier would obtain low classification performance for elephant flows as the imbalance between elephant flows and mice flows on Internet. The elephant flows, however, consume much more bandwidth than mice flows. When the classifier is deployed for traffic policing, the network management system cannot penalize elephant flows and avoid network congestion effectively. This article explores the factors related to low byte accuracy, and secondly, it presents a new traffic classification method to improve byte accuracy at the aid of data cleaning. Experiments are carried out on three groups of real-world traffic datasets, and the method is compared with existing work on the performance of improving byte accuracy. Experiment shows that byte accuracy increased by about 22.31% on average. The method outperforms the existing one in most cases.

关 键 词:network traffic classification byte accuracy elephant flow mice flow machine learning 

分 类 号:TP393.06[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象