检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《生物数学学报》2001年第1期85-89,共5页Journal of Biomathematics
摘 要:海洋鱼类是人类一种重要的生活物质资料,当代人在进行渔业捕捞满足自身生活需求时,应合理确定捕捞努力量以实现渔业资源的可持续利用,不危及后代人的需求.假定存在两个捕捞主体,分别就Cournot模型和Stackelberg模型分析了两个主体为了自身获得最大持续产量而投入的捕捞努力量.研究表明,与只有一个捕捞主体相比,当存在两个捕捞主体时,每个捕捞主体都将投入更多的捕捞努力量,但最大持续产量不随之增加,甚至还会减少.产生这种后果的原因在于每个主体只考虑自己投入的捕捞努力量对自己产出量的影响,而不考虑对对方或社会产生的负面影响.对渔业捕捞进行全面规划、综合管理是消除这种后果所必要的.Ocean fish is an important kind of man's living physical resources. Modern people should determine the catch reasonably in fishing industry to meet their living requirement in order to realize the sustainable development of fishery resources and not to damage the need of his descendant. Under the assumption that there are only two fishing players, this paper studies the problem that how they determine their fishing effort in Cournot model and Stackelberg model respectively, with an objective of maximizing the average net profit. Compared with one player case, it is shown that the maximum sustainable yield will not increase, even will decrease, althought everyone will take more fishing effort when there are two players. Such a dilemma attributes to the fact that every player only considers the positive influence to his yield and ignores the negative influence to his counterpart and the society. It is necessary to put overall planning and management on fishing industry in order to avoid such a result.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.1.164