检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]石家庄铁道学院,石家庄050043 [2]西北工业大学,西安710072
出 处:《应用力学学报》2001年第1期145-148,共4页Chinese Journal of Applied Mechanics
摘 要:以二维位势问题边界元分析为例,给出了利用线性非连续边界元离散边界积分方程时系数矩阵积分计算的精确表达式,通过和利用Gauss积分方法计算系数矩阵所得数值结果的比较表明:配位点选择不同对数值计算结果精度影响的主要原因是积分计算的精度,尤其当配位因子选择较大时,存在的准奇异积分(Nearly Singular Integrals)很难利用常规Gauss积分方法准确求得。In this paper, analytical integration scheme is presented to calculate both singular and nonsingular integrals associated with boundary integral equation of two-dimensional potential problems discretized by linear discontinuous elements. Both singular and nonsingular integrals are obtained in closed form. Numerical tests are performed to demonstrate the advantages of analytical approach. By comparison with the results obtained by Gauss quadrature rule, which is commonly employed to calculate nonsingular integrals, it is illustrated that the optimum collocation points of discontinuous boundary elements is greatly influenced by the accuracy of the integrals, especially the nearly singular integrals.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30