Rich GetRicher——图像检索中的一种自适应的相关反馈方法  被引量:3

RICH GET RICHER—AN ADAPTIVE RELEVANCE FEEDBACK APPROACH FOR CONTENT BASED IMAGE RETRIEVAL

在线阅读下载全文

作  者:段立娟[1] 高文[1] 马继勇[1] 

机构地区:[1]中国科学院计算技术研究所,北京100080

出  处:《计算机研究与发展》2001年第8期960-965,共6页Journal of Computer Research and Development

基  金:国家"八六三"高技术研究发展计划智能计算机主题项目 (86 3 -3 0 6 -ZD11-0 3 );中国科学院"知识创新"工程方向性项目资助

摘  要:早期的基于内容的图像检索系统以图像处理技术为核心 ,研究重点集中在视觉特征的选择和提取方面 ,而没有充分利用人们在视觉方面的主观性和人类所广泛使用的高层次概念和低层次视觉特征之间的相关性 .为解决上述问题 ,近年来相关反馈在基于内容的图像检索中受到重视 .提出了一种新的相关反馈方法 ,使得高层次语义特征能够逐步嵌入到基于低层次特征的图像检索中 ,该方法不仅能够记忆以前的交互信息 ,而且能够记忆相应的交互信息给系统带来的影响 ,实验结果表明该方法准确率高。Content based image retrieval(CBIR) has become one of the most active research areas in the past few years. At the early stage of CBIR, research primarily focused on exploring various feature representations, and ignored the subjectivity of human perception. There exists a gap between high level concepts and low level features. Relevance feedback is a promising approach to finding a mapping between semantic objects and low level features. A novel relevance feedback approach for image retrieval, the Rich Get Richer (RGR) strategy, is proposed in this paper. It is based on the general framework of Bayesian inference in statistics. The user's feedback information is propagated into the retrieval process step by step. With the Rich Get Richer (RGR) strategy, the more promising images are emphasized. On the contrary, the less promising ones are de emphasized. The experimental results show that the proposed approach greatly reduces the user's efforts of composing a query, and captures the needed information for the user more precisely.

关 键 词:图像检索 自适应 图像处理 计算机 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象