检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学》2001年第9期78-82,65,共6页Computer Science
基 金:国家自然科学基金(项目纪号69763003)
摘 要:Markov network ts an another powerful tool besides Bayesian network which can be used to do uncertain inference. A method of learning Markov network automaticly from mass data based on boundary has been discussed in this paper. Taking advantage of an important conclusion in information theory ,we present an efficient boundary based Markov network learning algorithm. This algorithm only demands O(N2) times CI (conditional independence) test. We prove if the joint probability is strictly positive,then the found Markov network must be the minimal I_map of the sample.Markov network is an another powerful tool besides Bayesian network which can be used to do uncertain inference. A method of learning Markov network automaticly from mass data based on boundary has been discussed in this paper. Taking advantage of an important conclusion in information theory,we present an efficient boundary based Markov network learning algorithm. This algorithm only demands O(N2) times CI(conditional independence) test. We prove if the joint probability is strictly positive,then the found Markov network must be the minimal I_map of the sample.
关 键 词:MARKOV网 学习算法 不确定性推理 边界 人工智能
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229