检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学药学院,浙江杭州310031 [2]浙江大学理学院数学系,浙江杭州310031
出 处:《药学学报》2001年第9期690-694,共5页Acta Pharmaceutica Sinica
摘 要:目的 用反向传播 (backpropagation ,BP)神经网络 ,从药物的溶解度设计符合一定释放度要求的缓释制剂处方。方法 选取 9种药物 (异烟肼、利巴韦林、盐酸地尔硫 ,盐酸雷尼替丁、盐酸环丙沙星、茶碱、替硝唑、丙基硫氧嘧啶、磺胺甲唑 )作为模型药物 ,按HPMC∶糊精 =(5 - 0 2 )∶1配比制成不同释放度的缓释片 ,测定各个处方的释放度 ,其释放度数据用于BP神经网络的建模、训练。结果 得到隐含层为一层、结点数为 5个和迭代次数为 2 5次的最佳神经网络 ,并成功拟定了 4个制剂处方 ,按此处方制备的缓释片的实测释放值与神经网络预测值相符。结论由MATLAB 5AIM To use the artificial neural network (ANN) in Matlab 5 1 tool-boxes to predict the formulations of sustained-release tablets. METHODS The solubilities of nine drugs and various ratios of HPMC∶Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. RESULTS The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulations based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. CONCLUSION The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249