检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南工业大学机电工程学院,湖南长沙410083
出 处:《上海有色金属》2001年第3期106-109,共4页Shanghai Nonferrous Metals
摘 要:超薄快速铸轧速度可达常规铸轧速度的十几倍 ,甚至二十几倍 ,在快速铸轧条件下铸造区长度将增加 ,其轧制压力分布对总轧制力的影响就不可忽略。因此建立该区的轧制压力分布模型是必须的。本文利用切块法推导出超薄快速铸轧过程铸造区 (结晶区 )内微元体静力平衡微分方程 ,并利用龙格 库塔法对该微分方程进行数值求解 ,即可求出铸造区轧制压力分布。该模型同样适用于常规铸轧条件。The speed of ultra thin high speed roll casting is ten times,even more than twenty times as high as that of the conventional roll casting.The length of the casting zone will increase under high speed roll casting condition;thus the influence of roll pressure distribution in the casting zone on the total rolling force can not be ignored.Therefore,it is necessary to establish a model of rolling pressure distribution in the casting zone.Static equilibrium differential equation of the micro body in the casting zone during ultra thin high speed roll casting process is deduced by using slab method in this paper.The differential equation is solved by using Runge Kutta method;consequently,the rolling pressure distribution in the casting zone is obtained.This model can also applied to the conventional roll casting condition.
分 类 号:TG331[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.23.53