检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王岚[1] 孟霜鹤[1] 谭志诚[1] 梁东白[1] 郭新闻[2] 王祥生[2]
机构地区:[1]中国科学院大连化学物理研究所,大连116023 [2]大连理工大学精细化工国家重点实验室,大连116012
出 处:《催化学报》2001年第5期491-493,共3页
基 金:国家自然科学基金资助项目 ( 2 97730 48)
摘 要:Nanosized ZSM 5 zeolite was synthesized by hydrothermal method and characterized by XRD and TEM techniques. The specific heat of the nanosized ZSM 5 zeolite was measured in the temperature range from 79 to 370 K, and its enhancement in specific heat was observed as compared with the corresponding microsized zeolite, indicating that the nanosized ZSM 5 zeolite possesses higher surface activity. The thermostability of the samples was determined by differential scanning calorimetric (DSC) and thermogravimetric (TG) techniques. The DSC results showed that, for the nanosized ZSM 5, a broad exothermic peak is observed from 1?300 K; for the microsized ZSM 5, the corresponding exothermic peak begins at 1?400 K, and a distinct phase transition can be observed at 1?620 K. The TG results showed that, for the nanozised ZSM 5, the maximum mass loss ratio is 6 9%, and two mass loss stages can be observed in the temperature ranges of 298~663 K and 923~ 1?273 K, respectively; for the microsized ZSM 5, the maximum mass loss ratio is 6 5% and it is more stable than the nanosized ZSM 5.Nanosized ZSM 5 zeolite was synthesized by hydrothermal method and characterized by XRD and TEM techniques. The specific heat of the nanosized ZSM 5 zeolite was measured in the temperature range from 79 to 370 K, and its enhancement in specific heat was observed as compared with the corresponding microsized zeolite, indicating that the nanosized ZSM 5 zeolite possesses higher surface activity. The thermostability of the samples was determined by differential scanning calorimetric (DSC) and thermogravimetric (TG) techniques. The DSC results showed that, for the nanosized ZSM 5, a broad exothermic peak is observed from 1?300 K; for the microsized ZSM 5, the corresponding exothermic peak begins at 1?400 K, and a distinct phase transition can be observed at 1?620 K. The TG results showed that, for the nanozised ZSM 5, the maximum mass loss ratio is 6 9%, and two mass loss stages can be observed in the temperature ranges of 298~663 K and 923~ 1?273 K, respectively; for the microsized ZSM 5, the maximum mass loss ratio is 6 5% and it is more stable than the nanosized ZSM 5.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.146.45