检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段立娟[1] 高文[1,2] 林守勋[1] 马继涌[3]
机构地区:[1]中国科学院计算技术研究所 [2]哈尔滨工业大学计算机科学与工程系哈尔滨150001 [3]美国科罗拉多大学语音研究中心
出 处:《计算机学报》2001年第11期1156-1162,共7页Chinese Journal of Computers
基 金:国家重点自然科学基金 ( 6978930 1);国家"八六三"高技术研究发展计划数字图书馆项目基金 ( 863-30 6-ZD11-0 3)资助
摘 要:为提高图像检索的效率 ,近年来相关反馈机制被引入到了基于内容的图像检索领域 .该文提出了一种新的相关反馈方法——动态相似性度量方法 .该方法建立在目前被广泛采用的图像相似性度量方法的基础上 ,结合了相关反馈图像检索系统的时序特性 ,通过捕获用户的交互信息 ,动态地修正图像的相似性度量公式 ,从而把用户模型嵌入到了图像检索系统 ,在某种程度上使图像检索结果与人的主观感知更加接近 .实验结果表明该方法的性能明显优于其它图像检索系统所采用的方法 .Due to the rapid growing amount of digital images on World Wide Web, there is a need for large multimedia database management. In the past few years, content-based image retrieval has been becoming an active research area. At the early stage of CBIR, research primarily focused on exploring various feature representations, and ignored the subjectivity of human perception. There exists a gap between high-level concepts and low-level features. Relevance feedback is a promising approach to finding a mapping between semantic objects and low-level features.Dynamic Similarity Metric,a novel relevance feedback approach for image retrieval, is proposed in this paper. It is a new technique that explores similarity information in relevance feedback. Differing from the general similarity metric, dynamic similarity metric takes into account the characteristics of all examples in the retrieval process. In general image retrieval, the similarity metric gives the similar degree between two images. Every feature is associated with the weights for reflecting the importance of corresponding feature. Although some relevance feedback image retrieval systems can change weights according to the user's feedback, previous feedback information is no longer used in these systems. Dynamic similarity metric can memorize the previous feedback information. At the same time, time sequence characteristic of relevance feedback is taken into account by the approach. To optimize the retrieval result, the similarity metric formula can be improved dynamically according to the user's interactive information. Through embedding all positive and negative examples' characteristics, it can find good results. The more promising images are emphasized more and the less promising ones are emphasized less. To evaluate the efficiency and contribution of dynamic similarity metric, we have implemented an image retrieval system, ImageSeek, based on the proposed method and performed some experiments. Experiments show that the dynamic similarity metric is a robust al
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15