基于听觉模型的话者特征参数提取及其在噪声背景下的话者辨识  被引量:2

Speaker feature extraction based on human auditory model and speaker identification under noisy background

在线阅读下载全文

作  者:戴明扬[1] 徐柏龄[1] 

机构地区:[1]南京大学声学研究所近代声学国家重点实验室,南京210093

出  处:《应用声学》2001年第6期6-12,44,共8页Journal of Applied Acoustics

基  金:国家自然科学基金资助项目(69872014)

摘  要:本文基于人耳听觉模型提出了一种鲁棒性的话者特征参数提取方法.该种方法中,首先由Gammatone听觉滤波器组和Meddis内耳毛细胞发放模型获得表征听觉神经活动特性的听觉相关图。由听觉神经脉冲发放的锁相特性和双声抑制特性,我们将听觉相关图每个频带中的幅值最大频率分量作为表征当前频带特性的特征参量,于是所有频带的特征参量便构成了表征当前语音段特性的特征矢量;我们采用DCT变换进一步消除各个特征参量之间的相关性,压缩特征矢量的维数.有效性试验表明,该种特征矢量基本上反映了输入语音的谱包络特性;抗噪声性能实验表明,在高斯白噪声和汽车噪声干扰下,该种特征参数比LPCC和MFCC有较个的相对失真;基于矢量量化的文本无关话者辨识表明。This paper proposes a robust speaker feature extracting algorithm based on human auditory model. In the algorithm, we first obtain the auditory correlogram from the Gamma tone filter bank and the Meddis inner hair cell model. Then according to the phase lock characteristic and two-tone inhibition phenomenon of the auditory nerve firing activity, we select the most dominant frequency component to characterize each frequency channel of the auditory correlogram, and get all these principal frequency com-ponents across channels for the feature vector of the current speech frame. To reduce correlation between the elements and dimensions of the feature vector, DCT transfor-mation is used. The feature effectiveness experiment shows that this feature represen ts the speech spectral contour basically, while the anti-noise experiment indicates that this feature has smaller relative distortion compared with LPCC and MFCC parameters under Gauss white noise or car noise interference. The speaker identification based on vector quantification shows that this speaker feature based system performs better than those LPCC and MFCC based system, especially for low signal to noise rate.

关 键 词:听觉模型 文本无关话者辨识 抗噪声鲁棒性 话者特征参数提取 人耳 机器识别 语音信号 

分 类 号:TN912.34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象