检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘宏[1] 王发民[1] 刘嘉[1] 姚文秀[1] 雷麦芳[1]
出 处:《计算物理》2002年第2期115-120,共6页Chinese Journal of Computational Physics
摘 要:研究了超音速钝锥绕流的稳定性和转捩点预报的数值计算方法 ,首先采用Euler方程求解钝锥绕流基本流场 ,用所得到的物面压力分布作为粘性边界层的外缘压力分布 ,给出了基本流场的初值 ;然后应用反迭代法与边界层渐近匹配的方法求解了钝锥边界层的稳定性方程 ,得到了钝锥边界层转捩数据 .该方法可提高计算精度 。Numerical method for stability analysis and transition prediction for supersonic flow around a blunt cone is investigated. In order to meet the required accuracy of the numerical values in the basal flow field, the result of the flow field is obtained by solving Euler equations where the pressure attribution on the surface of the cone is used as the outer edge pressure attribution of the viscous boundary layer. The Rayleigh inverse-iteration method and boundary layer asymptotic expansion method are used to solve the blunt cone boundary layer stability equation to get reliable boundary layer transition data. This method improves the numerical precision, and saves the computation time. It is also useful for stability analysis of blunt cone supersonic flow.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112