算子矩阵代数的自反性和超自反性  

在线阅读下载全文

作  者:韩德广[1] 

机构地区:[1]曲阜师范大学

出  处:《数学杂志》1991年第1期119-119,共1页Journal of Mathematics

摘  要:本文总假定 H 是可分的 Hilbert 空间;L(H)表示 H 上有界线性算子全体;而 L(?)(H)表示 L(H)上σ-ω算子拓扑连续的线性泛函全体.设(?)L(H)为σ-ω算子拓扑闭的子代数,(?)称为自反的是指(?)=Alg Lat(?)={T∈L(H):TE(?)E (?)E∈Lat(?)},其中 Lat(?)是(?)的不变子空间格.(?)称为超自反的是指存在常数 K>0,使对任意的 T∈L(H)有 d(T,(?))≤K sup{‖P_M^(?)TP_M‖∶M∈Lat(?)}.其中 P_M 是指到 M 上的自伴投影。有关算子代数的超自反性已有一些结果。

关 键 词:算子矩阵代数 自反性 超自反性 

分 类 号:O177.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象