检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孔峰[1] 张睿 吴甜 KONG Feng;ZHANG Rui;WU Tian(Economics and Management School of North China Electric Power University (Baoding), Baoding 071003,China)
机构地区:[1]华北电力大学经济与管理学院
出 处:《中国管理科学》2018年第11期145-152,共8页Chinese Journal of Management Science
基 金:国家自然科学基金项目资助(71271081)
摘 要:本文发现在GPRs搭接网络传统算法中,针对某些可分解的关键工序,通过工序的分解会产生分解悖论和咖啡时间悖论。通过对这些悖论现象的分析研究,发现其存在帕累托改进。对此,提出了两个分解优化定理及网络的分解优化方法,使网络的总工期和总时差的分布都得到了优化,为项目WBS和资源优化提供了更科学的,更充足的条件。并将该分解优化定理同流水作业原理相结合,用实例证明了该方法的可操作性,为流水作业中施工段的划分提供了科学的优化方法。In this paper, the critical activities decomposition paradox and the total floats paradox in the tra- ditional algorithm of GPRs multi--time difference network are found. The critical activities decomposition paradox is that the critical activity which is decomposed into two activities with FTS=0 logical relation will lead to the total duration shortened. The total floats paradox is that activities which are decomposed will increase the total float. The reasons of these two paradoxes and propose critical activities decomposition optimization theorem and total float decomposition optimization theorem are analyzed. The new methods make the total project duration and the distribution of total time of the network optimized. They can also provide more scientific and sufficient conditions for project WBS and resource optimization. In addition the division optimization theorem is combined with the flow process network in order to provide a scientific optimization method for the construction section in the flow process.
关 键 词:GPRs搭接网络计划 关键工序分解悖论 分解优化定理 流水作业原理
分 类 号:TB114.1[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.88