均布荷载下的抛物线形拱矢跨比的优化理论解  被引量:2

Optimal Theoretical Solution of Vector-span Ratio of Parabolic Arch under Uniform Load

在线阅读下载全文

作  者:王康平 张齐[2] Wang Kangping;Zhang Qi(Tianhe College,Guangdong Polytechnic Normal Univ.,Guangzhou 510540,China;College of Civil Engineering &Architecture,China Three Gorges Univ.,Yichang 443002,China)

机构地区:[1]广东技术师范学院天河学院,广州510540 [2]三峡大学土木与建筑学院,湖北宜昌443002

出  处:《三峡大学学报(自然科学版)》2018年第6期53-55,共3页Journal of China Three Gorges University:Natural Sciences

基  金:国家自然科学基金项目(51778343)

摘  要:在拱轴线形与截面优化的基础上,用理论的方法得出均布荷载下的抛物线形变截面拱矢跨比的优化理论解为3^(1/2)/4;在拱轴线形优化的基础上,用理论的方法得出均布荷载下的抛物线形等截面拱矢跨比的优化理论解为0.341 8,其优化结果均是拱体体积最小,但后者比前者大35%;并说明,该优化理论可精确运用于三铰拱甚至悬索,也可近似运用于无铰拱和两铰拱.On the basis of optimization of the arch axis and section,the theoretical solution ■3/4 of the vectorspan ratio of the parabolic variable cross-section arch under uniform load is obtained by the theoretical method.On the basis of the optimization of arch axis,the optimal theoretical solution 0.3418 of the vector-span ratio of the parabolic contour arch under uniform load is obtained by the theoretical method.The optimization results are both the smallest of the arch volume,but the latter is 35% larger than the former;and it is shown that the optimization theory can be applied to the three-hinged arch or even the suspension cable;even it can be applied to the arch without hinges and the two-hinged arch.

关 键 词: 矢跨比 优化 

分 类 号:TU156[建筑科学—建筑理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象