检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王康平 张齐[2] Wang Kangping;Zhang Qi(Tianhe College,Guangdong Polytechnic Normal Univ.,Guangzhou 510540,China;College of Civil Engineering &Architecture,China Three Gorges Univ.,Yichang 443002,China)
机构地区:[1]广东技术师范学院天河学院,广州510540 [2]三峡大学土木与建筑学院,湖北宜昌443002
出 处:《三峡大学学报(自然科学版)》2018年第6期53-55,共3页Journal of China Three Gorges University:Natural Sciences
基 金:国家自然科学基金项目(51778343)
摘 要:在拱轴线形与截面优化的基础上,用理论的方法得出均布荷载下的抛物线形变截面拱矢跨比的优化理论解为3^(1/2)/4;在拱轴线形优化的基础上,用理论的方法得出均布荷载下的抛物线形等截面拱矢跨比的优化理论解为0.341 8,其优化结果均是拱体体积最小,但后者比前者大35%;并说明,该优化理论可精确运用于三铰拱甚至悬索,也可近似运用于无铰拱和两铰拱.On the basis of optimization of the arch axis and section,the theoretical solution ■3/4 of the vectorspan ratio of the parabolic variable cross-section arch under uniform load is obtained by the theoretical method.On the basis of the optimization of arch axis,the optimal theoretical solution 0.3418 of the vector-span ratio of the parabolic contour arch under uniform load is obtained by the theoretical method.The optimization results are both the smallest of the arch volume,but the latter is 35% larger than the former;and it is shown that the optimization theory can be applied to the three-hinged arch or even the suspension cable;even it can be applied to the arch without hinges and the two-hinged arch.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3