Water entry of decelerating spheres simulations using improved ISPH method  被引量:3

Water entry of decelerating spheres simulations using improved ISPH method

在线阅读下载全文

作  者:Abdelraheem M.Aly Mitsuteru Asai 

机构地区:[1]Department of Mathematics, Faculty of Science, King Khalid University [2]Department of Mathematics, Faculty of Science, South Valley University [3]Department of Civil Engineering, Kyushu University

出  处:《Journal of Hydrodynamics》2018年第6期1120-1133,共14页水动力学研究与进展B辑(英文版)

摘  要:In this paper, we simulated the vertical impact of spheres on a water surface using three-dimensional incompressible smoothed particle hydrodynamics(3-D ISPH) method. The sphere motion is taken to be a rigid body motion and it is modeled by ISPH method. The governing equations are discretized and solved numerically using ISPH method. A stabilized incompressible SPH method by relaxing the density invariance condition is adopted. Here, we computed the motions of a rigid body by direct integration of the fluid pressure at the position of each particle on the body surface. The equations of translational and rotational motion were integrated in time domain to update the position of the rigid body at each time step. In this study, we improved the boundary treatment between fluid and fixed solid boundary by using virtual marker technique. In addition, an improved algorithm based on the virtual marker technique for the boundary particles is proposed to treat the moving boundary of the rigid body motion. The force exerted on the moving rigid boundary particles by the surrounding particles, is calculated by the SPH approximation at the virtual marker points. The applicability and efficiency of the current ISPH method are tested by comparison with reference experimental results.In this paper, we simulated the vertical impact of spheres on a water surface using three-dimensional incompressible smoothed particle hydrodynamics(3-D ISPH) method. The sphere motion is taken to be a rigid body motion and it is modeled by ISPH method. The governing equations are discretized and solved numerically using ISPH method. A stabilized incompressible SPH method by relaxing the density invariance condition is adopted. Here, we computed the motions of a rigid body by direct integration of the fluid pressure at the position of each particle on the body surface. The equations of translational and rotational motion were integrated in time domain to update the position of the rigid body at each time step. In this study, we improved the boundary treatment between fluid and fixed solid boundary by using virtual marker technique. In addition, an improved algorithm based on the virtual marker technique for the boundary particles is proposed to treat the moving boundary of the rigid body motion. The force exerted on the moving rigid boundary particles by the surrounding particles, is calculated by the SPH approximation at the virtual marker points. The applicability and efficiency of the current ISPH method are tested by comparison with reference experimental results.

关 键 词:Incompressible smoothed particle hydrodynamics(ISPH) free surface flow SPHERE rigid body water entry 

分 类 号:O3[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象