检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李颖[1] 郑明杰[1] LI-Ying;ZHENG Ming-jie(College Of Humanities & Information,Changchun University of Technology,Changchun Jilin 130122,China)
机构地区:[1]长春工业大学人文信息学院,吉林长春130122
出 处:《计算机仿真》2018年第12期342-345,354,共5页Computer Simulation
摘 要:在智能视频监控系统中,运动目标稳定特征提取是实现高速运动物体行为理解、识别以及跟踪的前提条件。传统的运动目标识别方法难以精确提取出稳定的运动目标,以及某些干扰物体中有部分区域与运动目标形状相同时,识别率低、实时性差等问题。针对上述问题,提出基于动态模板匹配的高速运动物体稳定特征识别方法。采用帧间差分算法确定高速运动目标物体可能存在的区域,获取较为清晰的高速运动物体目标轮廓,并基于运动目标轮廓信息构造稳定特征不变量。以稳定特征不变量为中心选择指定大小的矩形区域,将其作为下一帧模板匹配算法的模板,将待测图像的特征描述与运动目标模板特征进行匹配,完成对高速运动目标的识别。实验结果表明,所提方法能够实现对高速运动目标物体的实时分析,同时满足实际应用中,对高速运动目标物体识别实时性和准确性的要求。Traditional method of moving target recognition is difficult to accurately extract the stable moving target.Meanwhile,the recognition rate and the real-time performance are low.Therefore,a method to recognize stability feature of high-speed moving object based on dynamic template matching was presented.At first,the interframe difference algorithm was used to determine the possible area of high-speed moving object and obtain clear contour of high-speed moving object.Then,the stable feature invariant was constructed based on the contour information of moving object.Taking the stable feature invariant as the center,a rectangular area with a specified size was selected,which was used as the template of the next frame matching algorithm.Finally,the'feature description of the image to be tested was matched with the feature of moving target template.Thus,we completed the recognition of high-speed target.Simulation results show that the proposed method can achieve real-time analysis of high-speed object.Meanwhile,this method satisfies the real-time and accuracy requirements for high -speed object recognition.
关 键 词:视频监控图像 高速运动物体 稳定特征 特征识别 动态模板匹配
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.158.108