改进滴水算法的黏连字符分割方法  被引量:8

Segmentation of connected characters based on improved drop-fall algorithm

在线阅读下载全文

作  者:宋琦悦 穆学文 程欢 SONG Qiyue;MU Xuewen;CHENG Huan(School of Mathematics and Statistic,Xidian University,Xi'an 710071,Shaanxi,China)

机构地区:[1]西安电子科技大学数学与统计学院,陕西西安710071

出  处:《山东大学学报(工学版)》2018年第6期89-94,108,共7页Journal of Shandong University(Engineering Science)

基  金:陕西省自然科学基金(No.2015JM1031);中央高校基本科研业务费(No.JB150713)

摘  要:针对传统字符图像分割方法对笔画重叠黏连字符分割存在的不足,提出基于改进滴水算法来解决共用笔画黏连字符的分割。算法过程包括:利用Zhang-Sueng并行细化算法与自组织映射神经网络(self-organizing maps,SOM)聚类确定滴水算法初始点;定义新的水滴滴落路径。水滴从初始滴落点出发沿着字符重叠笔画的骨架滴落,水滴到达骨架末端时将继续沿着骨架倾斜方向滴落,直到遇到字符黏连部分的边界,水滴滚动的轨迹即为黏连字符切分路径。用改进滴水算法分割黏连字符避免了传统滴水算法初始滴落点定位不准确,导致字符分割断裂问题。对所提算法进行试验,与传统滴水算法和竖直分割算法进行比较,证明改进算法对笔画重叠黏连字符分割效果理想。As the traditional segmentation methods could not segment connected characters correctly,a segmentation algorithm based on improved drop-fall algorithm was proposed.The algorithm included two steps.Zhang-Sueng's thinning algorithm and the clustering of the connected region via self-organizing maps was used to find the starting drop point of drop-fall algorithm.A new drop path was defined to improve drop-fall algorithm.The water dropped from the starting drop point,along the skeleton of the character overlap stroke,at the end of the overlapped stroke skeleton,then continued dropping along the slant angle direction of the skeleton,until met the boundary of the character connected part.The water drop path was defined as the connected character segmentation path.This method solved the problem of character strokes fracture caused by the traditional drop-fall algorithm.Compared with the traditional drop-fall algorithm and the vertical projection segmentation algorithm,the experimental results showed that it was an ideal method for segmenting connected characters.

关 键 词:黏连字符 字符分割 滴水算法 Zhang-Sueng并行细化算法 SOM神经网络聚类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象