基于流形正则化随机游走的图像显著性检测  被引量:3

Image Saliency Detection Based on Manifold Regularized Random Walk

在线阅读下载全文

作  者:汪丽华[1,2] 涂铮铮 王泽梁[1] Wang Lihua;Tu Zhengzheng;Wang Zeliang(School of Information Engineering,Huangshan University,Huangshan,Anhui 245041,China;School of Computer Science and Technology,Anhui University,Hefei,Anhui 230601,China)

机构地区:[1]黄山学院信息工程学院,安徽黄山245041 [2]安徽大学计算机科学与技术学院,安徽合肥230601

出  处:《激光与光电子学进展》2018年第12期209-216,共8页Laser & Optoelectronics Progress

基  金:国家自然科学基金(61602006);安徽省高校自然科学研究项目(KJHS2018B06);安徽省教育厅高校优秀青年人才支持计划项目(gxyq2018083);安徽省旅游人才培养示范基地开放研究项目(YYRCYB1703)

摘  要:针对吸收马尔可夫随机游走方法未能充分抑制显著图的中心背景区域和丢失位于图像边界的显著目标的问题,提出一种基于流形正则化随机游走的图像显著性检测方法。首先以超像素作为节点对输入图像构造全局图,通过吸收马尔可夫链随机游走算法计算得到初始显著图,再对初始显著图利用自适应阈值分割获得稳健前景查询节点。其次,为有效利用图像全局信息和局部信息的互补性,构建局部正则图以获得局部最优相似度矩阵。最后,将获得的局部最优相似度矩阵和前景查询节点信息应用于流形正则化框架中得到最终显著值结果。在公共数据集上进行实验验证,结果表明,运用本文算法的显著性检测在查准率和查全率等评价指标方面均有提升。Owing to the problems of the absorbing Markov random walk method failing to fully suppress the central background area of the saliency map and losing parts of salient objects near the image boundary,an image saliency detection method based on manifold regularized random walk is proposed.First,a global graph with superpixels from the input image is constructed.An initial saliency map is obtained by using the absorbing Markov chain,and then an adaptive threshold is used to segment the initial saliency map to ,get robust foreground queries.Second,in order to make effective use of the complementarity of global information and local information,an optimal affinity matrix is obtained by constructing the local regular graph.Finally,the obtained optimal affinity matrix and foreground queries are applied in the manifold regularized framework to obtain the final saliency results. Experimental verifications are carried out on three public datasets.The results show that the precision and recall rate of saliency detection have been improved by the proposed method.

关 键 词:图像处理 显著性检测 随机游走 吸收马尔可夫链 流形正则化 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象