平面线圈型直线时栅参数优化方法的研究(英文)  

Research on the parametric optimization method of planar-coil linear time grating

在线阅读下载全文

作  者:张瑞 武亮[1] 彭东林[1] 徐清华 徐是 Rui ZHANG;Liang WU;Dong-lin PENG;Qing-hua XU;Shi XU(Engineering Research Center of Mechanical Testing Technology and Equipment (Ministry of Education), Chongqing Key Laboratory of Time Grating Sensing and Advanced Testing Technology, Chongqing University of Technology,Chongqing 400054,China)

机构地区:[1]重庆理工大学机械检测技术与装备教育部工程研究中心时栅传感及检测技术重庆市重点实验室,重庆400054

出  处:《机床与液压》2018年第24期62-67,131,共7页Machine Tool & Hydraulics

基  金:Natural Science Foundation of China(51405049);Education Commission of Chongqing(KJ1709191);Capability Promotion Plan of Chongqing Technology Research and Development Base(cstc2014pt-sy40002);Graduate Innovation Fund of Chongqing(CYS17278)~~

摘  要:提出了一种基于非线性规划遗传算法的平面线圈型直线时栅位移传感器结构参数的优化方法,与传统枚举法相比该方法在优化效率和效果上都有大幅度的提高。通过建立基于非线性规划遗传算法的数学模型对传感器参数进行优化,根据优化结果建立传感器物理模型进行仿真,并设计传感器样机进行实验。与枚举法优化结果相比较:优化效率提高了65%,谐波畸变率降低了10倍。在240 mm的量程范围内,测量精度达到0. 8μm。结果表明了该优化方法的可行性,优化后的传感器从结构上抑制了原始误差,实现了高精度测量。A method to optimize the structural parameters of the planar-coil linear time grating displacement sensor based on nonlinear programming genetic algorithm is proposed,which is used to improve efficiency and effectiveness comparing with the enumeration method. The nonlinear programming genetic algorithm is used to optimize the structural parameters of the sensor,and the sensor prototype based on optimized results is designed and experimented. Results show that the efficiency is enhanced by 65% and the harmonic distortion is reduced by 10 times,compared with experimental results using enumeration method. Meanwhile,in the range of 240 mm,the measuring accuracy of the sensor can reach ± 0. 8 μm. This paper shows that the method restrains the original error induced by structure and the optimized sensor can realize high accuracy measurement.

关 键 词:非线性规划遗传算法 平面线圈型直线时栅 

分 类 号:TH711[机械工程—测试计量技术及仪器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象