Synthesis of nitrogen-doped carbon nanotubes-FePO_4 composite from phosphate residue and its application as effective Fenton-like catalyst for dye degradation  被引量:4

Synthesis of nitrogen-doped carbon nanotubes-FePO_4 composite from phosphate residue and its application as effective Fenton-like catalyst for dye degradation

在线阅读下载全文

作  者:Lianmei Wei Yi Zhang Shengwen Chen Luping Zhu Xiaoyu Liu Lingxue Kong Lijun Wang 

机构地区:[1]School of Environmental and Materials Engineering,Shanghai Polytechnic University [2]Research Center of Resource Recycling Science and Engineering,Shanghai Polytechnic University [3]Institute for Frontier Materials,Deakin University

出  处:《Journal of Environmental Sciences》2019年第2期188-198,共11页环境科学学报(英文版)

基  金:supported by the Science and Technology Development Foundation of Pudong New Area (No.PKJ2014Z03);Dawn Program of Shanghai (No.09SG54);Material Science and Engineering Key Subject of Shanghai Polytechnic University (No.XXKZD1601);Gaoyuan Discipline of Shanghai-Environmental Science and Engineering (Resource Recycling Science and Engineering)

摘  要:Phosphate residue is regarded as a hazardous waste, which could potentially create significant environmental and health problems if it is not properly treated and disposed of. In this study, nitrogen-doped carbon nanotubes-FePO_4(NCNTs-FePO_4) composite was successfully synthesized from phosphate residue, and its application as an effective catalyst was explored. Firstly, an effective method was developed to recover FePO_4 from phosphate residue, achieving an impressive FePO_4 mass recovery rate of 98.14%. Then, the NCNTsFePO_4 catalyst was synthesized from the recovered FePO_4 by two main reactions, including surface modification and chemical vapor deposition. Finally, the synthesized NCNTs-FePO_4 was applied to photo-degrade 15 mg/L Rhodamine B(RhB) in a Fenton-like system. The results showed that 98.9% of RhB could be degraded in 60 min, closely following the pseudofirst-order kinetics model. It was found that even after six consecutive cycles, NCNTs-FePO_4 still retained a high catalytic capacity(>50%). Moreover, ·OH radicals participating in the RhB degradation process were evidenced using quenching experiments and electron paramagnetic resonance analysis, and a rational mechanism was proposed. It was demonstrated that the materials synthesized from hazardous phosphate residue can be used as an effective catalyst for dye removal.Phosphate residue is regarded as a hazardous waste, which could potentially create significant environmental and health problems if it is not properly treated and disposed of. In this study, nitrogen-doped carbon nanotubes-FePO_4(NCNTs-FePO_4) composite was successfully synthesized from phosphate residue, and its application as an effective catalyst was explored. Firstly, an effective method was developed to recover FePO_4 from phosphate residue, achieving an impressive FePO_4 mass recovery rate of 98.14%. Then, the NCNTsFePO_4 catalyst was synthesized from the recovered FePO_4 by two main reactions, including surface modification and chemical vapor deposition. Finally, the synthesized NCNTs-FePO_4 was applied to photo-degrade 15 mg/L Rhodamine B(RhB) in a Fenton-like system. The results showed that 98.9% of RhB could be degraded in 60 min, closely following the pseudofirst-order kinetics model. It was found that even after six consecutive cycles, NCNTs-FePO_4 still retained a high catalytic capacity(>50%). Moreover, ·OH radicals participating in the RhB degradation process were evidenced using quenching experiments and electron paramagnetic resonance analysis, and a rational mechanism was proposed. It was demonstrated that the materials synthesized from hazardous phosphate residue can be used as an effective catalyst for dye removal.

关 键 词:Phosphate residue FENTON-LIKE NITROGEN-DOPED carbon nanotubes-FePO4 HYDROXYL radical 

分 类 号:X[环境科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象