机构地区:[1]State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences [2]National Engineering Laboratory for VOCs Pollution Control Material & Technology,University of Chinese Academy of Sciences [3]State Key Laboratory of Applied Microbiology Southern China,Guangdong Institute of Microbiology,Guangdong Academy of Sciences
出 处:《Journal of Environmental Sciences》2019年第2期238-248,共11页环境科学学报(英文版)
基 金:financially supported by the National Natural Science Foundation of China (Nos.51478456 and 51178451)
摘 要:Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane(AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population.Sulfate-reducing bacteria(SRB)(e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus)and anaerobic methanotrophic archaea(ANME)(e.g., Methanosaeta sp. and Methanolinea sp.)coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH_4 and SO_4^(2-) were consumed by methanotrophs and sulfate reducers with CO_2 and H_2S as products. The H_3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H_2S from a landfill site. On average, 93.33% of H_2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH_4.Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane(AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population.Sulfate-reducing bacteria(SRB)(e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus)and anaerobic methanotrophic archaea(ANME)(e.g., Methanosaeta sp. and Methanolinea sp.)coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH_4 and SO_4^(2-) were consumed by methanotrophs and sulfate reducers with CO_2 and H_2S as products. The H_3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H_2S from a landfill site. On average, 93.33% of H_2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH_4.
关 键 词:ANAEROBIC METHANE oxidation Sulphate reduction MICROBIAL population 13C isotope-labelling Potential pathway LANDFILL gas
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...