检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ling Hu Xianghao Mu Weizhou Cai Yuwei Ma Yuan Xu Haiyan Wang Yipu Song Chang-Ling Zou Luyan Sun
机构地区:[1]Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University [2]Key Laboratory of Quantum Information, CAS, University of Science and Technology of China
出 处:《Science Bulletin》2018年第23期1551-1557,共7页科学通报(英文版)
基 金:the support from National Key Research and Development Program of China (2017YFA0304303);the National Natural Science Foundation of China (11474177);C.L. Zou is supported by Anhui Initiative in Quantum Information Technologies (AHY130000)
摘 要:Universal control of quantum systems is a major goal to be achieved for quantum information processing,which demands thorough understanding of fundamental quantum mechanics and promises applications of quantum technologies. So far, most studies concentrate on ideally isolated quantum systems governed by unitary evolutions, while practical quantum systems are open and described by quantum channels due to their inevitable coupling to environment. Here, we experimentally simulate arbitrary quantum channels for an open quantum system, i.e. a single photonic qubit in a superconducting quantum circuit.The arbitrary channel simulation is achieved with minimum resource of only one ancilla qubit and measurement-based adaptive control. By repetitively implementing the quantum channel simulation,we realize an arbitrary Liouvillian for a continuous evolution of an open quantum system for the first time. Our experiment provides not only a testbed for understanding quantum noise and decoherence,but also a powerful tool for full control of practical open quantum systems.Universal control of quantum systems is a major goal to be achieved for quantum information processing,which demands thorough understanding of fundamental quantum mechanics and promises applications of quantum technologies. So far, most studies concentrate on ideally isolated quantum systems governed by unitary evolutions, while practical quantum systems are open and described by quantum channels due to their inevitable coupling to environment. Here, we experimentally simulate arbitrary quantum channels for an open quantum system, i.e. a single photonic qubit in a superconducting quantum circuit.The arbitrary channel simulation is achieved with minimum resource of only one ancilla qubit and measurement-based adaptive control. By repetitively implementing the quantum channel simulation,we realize an arbitrary Liouvillian for a continuous evolution of an open quantum system for the first time. Our experiment provides not only a testbed for understanding quantum noise and decoherence,but also a powerful tool for full control of practical open quantum systems.
关 键 词:QUANTUM channel SIMULATION OPEN QUANTUM system Adaptive QUANTUM control SUPERCONDUCTING QUANTUM COMPUTATION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43