Formation and Movement of Groundwater in the Thick Loess-Palaeosol Sequences of the Chinese Loess Plateau  被引量:2

Formation and Movement of Groundwater in the Thick Loess-Palaeosol Sequences of the Chinese Loess Plateau

在线阅读下载全文

作  者:MA Yandong ZHAO Jingbo LIU Rui ZHOU Qi YIN Leipeng 

机构地区:[1]School of Geography and Tourism, Shaanxi Normal University [2]State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences [3]Department of Basic Science, Engineering University of Armed Police Force [4]Key Laboratory of Disaster Monitoring and Mechanism Simulating of Shaanxi Province, Baoji University of Arts and Sciences

出  处:《Pedosphere》2018年第6期895-904,共10页土壤圈(英文版)

基  金:supported by the National Natural Science Foundation of China (Nos. 41772180 and 40672108);the State Key Laboratory of Loess and Quaternary Geology of Institute of Earth Environment, Chinese Academy of Sciences (No. SKLLQG1713)

摘  要:Permeability and water-bearing space are important hydrological characteristics of the loess strata. In this study a systematic experiment was conducted to measure the magnetic susceptibility, grain size, porosity, and infiltration rate of the loess and palaeosol layers on a loess tableland of the central Chinese Loess Plateau, in order to investigate the differences in hydrological conditions between the loess and palaeosol layers. The magnetic susceptibility of the loess layer was lower than that of the palaeosol layer, but the average quasi-steady infiltration rate was about 0.31 mm min^(-1) higher, the coarse silt and very fine sand contents were about7.1% greater, and the porosity was about 5.7% higher. These differences were mainly due to pedogenesis, which was affected by the Quaternary climate. The pedogenesis differences between the loess and palaeosol layers resulted in hydrological property differences in terms of permeability and water-bearing space. The loess layer had a higher permeability and more water-bearing space than the palaeosol layer, which meant that the loess layer is more likely to form aquifers and the palaeosol layer is more prone to form aquitards.The groundwater in the loess strata had a multilayered characteristic, which depended on the relative impermeability of palaeosol layer and the alternate deposition of loess-palaeosol layers. The hydrological characteristics of the loess strata demonstrated that the Quaternary climate had an important control function on the formation and movement of groundwater. This knowledge provides a reliable theoretical basis for water resource development and utilization on the Chinese Loess Plateau, and this study extends the application of Quaternary climate change theory to hydrological systems in loess deposits.Permeability and water-bearing space are important hydrological characteristics of the loess strata. In this study a systematic experiment was conducted to measure the magnetic susceptibility, grain size, porosity, and infiltration rate of the loess and palaeosol layers on a loess tableland of the central Chinese Loess Plateau, in order to investigate the differences in hydrological conditions between the loess and palaeosol layers. The magnetic susceptibility of the loess layer was lower than that of the palaeosol layer, but the average quasi-steady infiltration rate was about 0.31 mm min^(-1) higher, the coarse silt and very fine sand contents were about7.1% greater, and the porosity was about 5.7% higher. These differences were mainly due to pedogenesis, which was affected by the Quaternary climate. The pedogenesis differences between the loess and palaeosol layers resulted in hydrological property differences in terms of permeability and water-bearing space. The loess layer had a higher permeability and more water-bearing space than the palaeosol layer, which meant that the loess layer is more likely to form aquifers and the palaeosol layer is more prone to form aquitards.The groundwater in the loess strata had a multilayered characteristic, which depended on the relative impermeability of palaeosol layer and the alternate deposition of loess-palaeosol layers. The hydrological characteristics of the loess strata demonstrated that the Quaternary climate had an important control function on the formation and movement of groundwater. This knowledge provides a reliable theoretical basis for water resource development and utilization on the Chinese Loess Plateau, and this study extends the application of Quaternary climate change theory to hydrological systems in loess deposits.

关 键 词:AQUIFER AQUITARD grain size magnetic susceptibility PEDOGENESIS permeability QUATERNARY climate 

分 类 号:S152[农业科学—土壤学] P641[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象