检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Science, Xijing University [2]Institute of Modern Physics, Northwest University [3]Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University [4]School of Physics, Northwest University [5]College of Physical and Technology, Yangzhou University
出 处:《Communications in Theoretical Physics》2019年第1期75-78,共4页理论物理通讯(英文版)
基 金:Supported by the National Natural Science Foundation of China under Grant Nos.11675139,11605137,11435006,11405130;the Double First-Class University Construction Project of Northwest University;the China Postdoctoral Science Foundation under Grant No.2017M623219;Shaanxi Postdoctoral Science Foundation
摘 要:In this note, we recalculate the entropy of the Vaidya black hole on the event horizon by considering the generalized uncertainty principle based on the brick-wall model. The result shows that we need not impose a cut-off by hand anymore and the result satisfies the Bekenstein-Hawking law as well.In this note, we recalculate the entropy of the Vaidya black hole on the event horizon by considering the generalized uncertainty principle based on the brick-wall model. The result shows that we need not impose a cut-off by hand anymore and the result satisfies the Bekenstein-Hawking law as well.
关 键 词:ENTROPY BLACK HOLE generalized uncertainty PRINCIPLE brick-wall model MINIMAL LENGTH
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222