基于Hilbert边际谱和SAE-DNN的局部放电模式识别方法  被引量:9

Pattern Recognition of Partial Discharge Based on Hilbert Marginal Spectrum and Sparse Autoencoder-Deep Neural Networks

在线阅读下载全文

作  者:高佳程 朱永利[1] 郑艳艳[1] 张科[1] 刘帅[1] GAO Jiacheng;ZHU Yongli;ZHENG Yanyan;ZHANG Ke;LIU Shuai(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source (North China Electric Power University),Baoding 071003,China)

机构地区:[1]新能源电力系统国家重点实验室(华北电力大学),河北省保定市071003

出  处:《电力系统自动化》2019年第1期87-94,共8页Automation of Electric Power Systems

基  金:国家自然科学基金资助项目(51677072);中央高校基本科研业务费专项资金资助项目(2017XS118)~~

摘  要:提出了一种基于Hilbert边际谱和稀疏自编码器(SAE)—深度神经网络(DNN)的局部放电(PD)信号的模式识别方法。首先,以变分模态分解(VMD)对PD信号进行分解,对所得各分量进行Hilbert变换构建相应的Hilbert边际谱。其次,以PD信号的Hilbert边际谱为输入数据,利用SAE自动学习复杂数据的内在特征来提取简明的数据特征表达获得参数。再次,利用SAE的训练结果初始化DNN,再以大量训练样本进行分类器的训练。同时,为了加快SAE和DNN学习过程的收敛速度,以自适应步长的学习速率对网络进行调优,更新权值参数。最后,用训练好的DNN完成测试样本的PD类型的识别。此外,以基于BP神经网络和支持向量机的识别结果与文中结果进行比较。实验结果证明,所采用的识别方法具有更高的正确识别率。A method based on Hilbert marginal spectrum and sparse autoencoder(SAE)-deep neural networks(DNN)is proposed to recognize partial discharge(PD)types.Firstly,PD signals are dealt with variational mode decomposition(VMD),and these obtained modes are used to construct corresponding Hilbert marginal spectrum by Hilbert transformation.Secondly,a Hilbert marginal spectrum of PD signal is taken as an input vector,and SAE can learn the inherent features and extract the succinct expressions from original data automatically.Thirdly,the results obtained by SAE are used to initialize DNN which is trained by a large number of samples.In the meanwhile,in order to speed up the convergence in the processes of learning for SAE and DNN,the network is optimized with the adaptive-step learning rate and updated with the weight parameters.Finally,DNN is trained well to identify the PD types of samples.Besides,compared with the results based on BP neural networks and support vector machines,the results based on SAE-DNN can achieve a higher accuracy.

关 键 词:局部放电 模式识别 Hilbert边际谱 稀疏自编码器 深度神经网络 

分 类 号:TM855[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象