基于多层极限学习机的电力系统频率安全评估方法  被引量:49

Frequency Safety Assessment of Power System Based on Multi-layer Extreme Learning Machine

在线阅读下载全文

作  者:文云峰 赵荣臻 肖友强 刘祯斌 WEN Yunfeng;ZHAO Rongzhen;XIAO Youqiang;LIU Zhenbin(School of Electrical and Information Engineering,Hunan University,Changsha 410000,China;School of Electrical Engineering,Chongqing University,Chongqing 400044,China;Yunnan Power Grid Planning and Construction Research Center,Kunming 650011,China;China Construction Seventh Engineering Division Co.Ltd.,Shenzhen 518116,China)

机构地区:[1]湖南大学电气与信息工程学院,湖南省长沙市410000 [2]重庆大学电气工程学院,重庆市400044 [3]云南电网规划建设研究中心,云南省昆明市650011 [4]中国建筑第七工程局有限公司,深圳市518116

出  处:《电力系统自动化》2019年第1期133-140,共8页Automation of Electric Power Systems

基  金:国家自然科学基金资助项目(51707017);重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0422);中央高校基本科研业务费专项资金资助项目~~

摘  要:可再生能源发电的随机性、间歇性和低惯性特征导致含可再生能源电力系统的频率安全问题凸显。利用时域仿真进行频率安全评估存在计算量大、耗时长等缺陷,难以满足多重复杂不确定因素"组合数爆炸"下的频率安全快速评估需求。为了实现频率安全的快速分析与预测,提出一种基于多层极限学习机(ML-ELM)的频率安全在线评估方法。该方法通过深层架构建立输入与输出之间的非线性映射关系,并在自下而上的逐层无监督训练过程中,引入自动编码器算法和正则化系数,逐层优化输入层与隐含层之间的权重矩阵,以使ML-ELM有效表征复杂函数、提高预测精度和泛化能力。在IEEE RTS-79系统上开展算例测试,将测试结果与时域仿真和浅层神经网络方法所得结果进行比较,验证了所提方法的准确性和泛化能力。The random,intermittent and weak inertia characteristics of renewable energy generation have led to a prominent problem in the frequency safety of high-rate renewable energy power systems.The use of time-domain simulation for frequency safety assessment has the disadvantages of large amount of calculation and long time.It is difficult to meet the rapid assessment requirement of frequency safety under the"combined explosion"of multiple complex uncertainties.In order to realize online analysis and prediction of frequency safety,a method based on multi-layer extreme learning machine(ML-ELM)is applied.The non-linear mapping relationship between the input layer and the hidden layer is built by the deep structure theory and in the layer-wise unsupervised training,automatic encoder algorithms and regularization coefficients are introduced to optimize the weight matrix between the input layer and the hidden layer,so that the ML-ELM can effectively represent complex functions and improve predictive accuracy and generalization ability.Case studies of the IEEE RTS-79 system demonstrate the rapidity,high accuracy and well generalization ability of the proposed method.

关 键 词:频率安全 极限学习机 低惯性系统 机器学习 人工智能 大数据 

分 类 号:TM71[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象