我国31省份城乡人均医疗保健支出空间自相关差异性研究  被引量:17

Study on the Spatial Autocorrelation of Medical Care Per Capita Expenditure in 31 Provinces in China

在线阅读下载全文

作  者:李旭 仇蕾洁 姜鑫洋 刘倩[1] 马安宁[3,2] 盛红旗 马桂峰 LI Xu;QIU Lei-jie;JIANG Xin-yang(Weifang Medical University,Weifang,Shandong,261053,China)

机构地区:[1]潍坊医学院,山东潍坊261053 [2]"健康山东"重大社会风险预测与治理协同创新中心,山东潍坊261053 [3]济宁医学院,山东济宁272113 [4]潍坊市人力资源与社会保障局,山东潍坊261041

出  处:《中国卫生经济》2019年第1期42-46,共5页Chinese Health Economics

基  金:国家自然科学基金项目(71673202);山东省研究生导师指导能力提升项目(SDYY17104)

摘  要:目的:分析我国城乡人均医疗保健支出和空间相关性的差异,为我国城乡卫生资源合理配置提供理论参考。方法:分别采用空间计量经济学的全局莫兰指数和局部莫兰指数分析我国人均医疗保健支出空间相关性。结果:2012—2016年我国31省份农村人均医疗保健支出年平均增长速度为15.47%,城镇人均医疗保健支出年平均增长速度为12.04%;城乡全局莫兰指数均为正值,且具有统计学意义(P<0.01);2012—2016年城乡局部莫兰指数主要呈现H-H和L-L聚集区。结论:我国城乡人均医疗保健支出增长过快,两者之间存在差异,我国31省份城乡人均医疗保健支出存在空间相关性,部分省份存在明显的地区聚集性。Objective: To analyze urban and rural per capita health expenditures and the difference of spatial correlation. And it provides theoretical reference for the rational allocation of health resources in China. Methods: The global and local Moran’s I of spatial econometrics were used to analyze the spatial correlation of per capita urban and rural health care expenditure in 31 provinces. Results: From 2012 to 2016, the average annual growth rate of per capita medical care expenditure in 31 provinces in China was 15.47%, and that of urban per capita medical care expenditure was 12.04%.The global Moran’s I in both urban and rural areas was positive and statistically significant(P<0.01).From 2012 to 2016, the local Moran’s I index of urban and rural areas mainly presented the h-h and l-l agglomeration areas. Conclusion: The per capita medical care expenditure in urban and rural areas in China has grown too fast, and there are differences between urban and rural areas. There is a spatial correlation between the per capita medical care expenditure in 31 provinces, and there is a significant regional aggregation in some provinces and cities.

关 键 词:人均医疗保健支出 莫兰指数 空间相关性 

分 类 号:R1-9[医药卫生—公共卫生与预防医学] F014.4[经济管理—政治经济学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象