序信息系统中的双量化决策粗糙集模型  被引量:2

Double Quantization Decision-theoretic Rough Set Models in Ordered Information System

在线阅读下载全文

作  者:陈华峰 沈玉玲 瞿先平 龙建武[2] CHEN Hua-feng;SHEN Yu-ling;QU Xian-ping;LONG Jian-wu(Department of Foundation,Chongqing Telecommunication Polytechnic College,Chongqing 402247,China;Collge of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)

机构地区:[1]重庆电讯职业学院基础部,重庆402247 [2]重庆理工大学计算机科学与工程学院,重庆400054

出  处:《模糊系统与数学》2018年第6期163-170,共8页Fuzzy Systems and Mathematics

基  金:国家自然科学基金资助项目(61502065);重庆市科委基础科学与前沿技术研究(重点)项目(cstc2015jcyjBX0127);重庆市教委科学技术研究项目(KJ1500922;KJ1605201)

摘  要:决策粗糙集和程度粗糙集作为两类广义的粗糙集模型,分别从相对信息量化和绝对信息量化的观点对经典的粗糙集模型进行了扩张。本文在序信息系统中将这两类广义粗糙集模型进行融合,即将决策粗糙集和程度粗糙集的近似算子重新组合,以此构造了两种不同类型的双量化粗糙集模型。然后,对模型的一些基本性质进行了讨论,新建立的粗糙集模型包含了相对量化信息和绝对量化信息。最后,通过对实际案例分析展现了双量化决策规则的获取方法,结果表明两类模型均可以有效的获取决策规则,本文为序信息系统中的决策分析提供了新的选择。The decision-theoretic rough set and graded rough set are two kinds of generalized rough models.They expand the classical rough set model from the point of view of relative information and absolute information quantization,respectively.This study fuses these two generalized rough set models in an ordered information system.It means that recombining the approximate operators of decision-theoretic rough set and graded rough set to construct two different types of double quantization rough set models.Then,some essential properties of these new established models are addressed.The novel models incorporate the relative information and absolute quantitative information.Finally,the approach of achieving double quantization decision rules is represented through an actual case analysis.The results indicate that two kinds of models can effectively obtain decision rules.This investigation provides a new choice for decision analysis in an ordered information system.

关 键 词:决策粗糙集 程度粗糙集 序信息系统 双量化 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象