大豆α-生育酚的遗传与QTL分析  被引量:4

Inheritance and QTL Mapping for α-Tocopherol in Soybean

在线阅读下载全文

作  者:梁慧珍[1] 余永亮[1] 许兰杰[1] 杨红旗[1] 董薇[1] 谭政伟 李磊 裴新涌 刘新梅 LIANG HuiZhen;YU YongLiang;XU LanJie;YANG HongQi;DONG Wei;TAN ZhengWei;LI Lei;PEI XinYong;LIU XinMei(Sesame Research Center,Henan Academy of Agricultural Sciences,Zhengzhou 450002;Institute of Agricultural Economy and Information,Henan Academy of Agricultural Sciences,Zhengzhou 450002)

机构地区:[1]河南省农业科学院芝麻研究中心,郑州450002 [2]河南省农业科学院农业经济与信息研究所,郑州450002

出  处:《中国农业科学》2019年第1期11-20,共10页Scientia Agricultura Sinica

基  金:国家现代农业产业技术体系建设专项资金(CARS-21);河南省药用植物遗传改良创新型科技团队;国家农业科研杰出人才及其创新团队(特种油料品质改良);河南省科技攻关计划(182102310062);河南省重大科技专项(181100110300)

摘  要:【目的】通过对大豆α-生育酚进行遗传和QTL分析,研究其遗传机制,定位其主效QTL,为高α-生育酚含量的大豆品种选育奠定遗传学基础。【方法】以栽培大豆晋豆23为母本、山西农家品种大豆灰布支黑豆(ZDD02315)为父本杂交衍生的447个RIL作为供试群体构建遗传图谱,试验群体及亲本分别于2011年、2012年和2015年夏季在河南省农业科学院原阳试验基地种植,冬季在海南省三亚南繁基地种植。田间试验采取随机区组设计,2次重复。从6个环境中每个家系选取15.00 g籽粒饱满,大小一致的大豆种子,利用高效液相色谱法定性、定量测定样品中的α-生育酚含量。采用主基因+多基因混合遗传分离分析法和WinQTLCart 2.5复合区间作图法,对大豆α-生育酚含量进行主基因+多基因混合遗传分析和QTL定位。【结果】基于主基因+多基因混合遗传分离分析法,α-生育酚受4对主基因控制,遗传基因分布在双亲中。4对主基因间加性效应值中3对为正值,表明这些基因来源于母本晋豆23;1对为负值,表明该对基因来源于父本灰布支黑豆;4对主基因之间相互作用的上位性效应表现为正值和负值的各有3对,说明不同基因间上位性效应对α-TOC的影响方向并不完全一致。环境因素引起的变异为0.13%—4.05%。表明α-TOC主要受4对主基因影响,受环境因素影响较小。采用WinQTLCart 2.5复合区间作图(CIM)共检测到17个影响α-生育酚的QTL,分布于第1、2、5、6、8、14、16、17共8条染色体中,单个QTL的贡献率8.35%—35.78%,QTL主要表现为加性效应。qα-D1a-1同时在2011年原阳、2012年原阳和三亚、2015年原阳4个环境下检测到,且均定位在第1染色体Satt320—Satt254标记区间19.79 cM处,解释的表型变异分别为12.55%、12.01%和11.89%、12.61%,加性效应值0.119-0.132,增加α-TOC含量的等位基因来自母本晋豆23;qα-A2-1同时在2011年原阳和三亚、2015年原阳3个�【Objective】 Inheritance and main QTL for α-tocopherol were detected by genetic analysis and QTL mapping. The results lay a genetic foundation for the selection of soybean varieties with high α-tocopherol content in soybean.【Method】The 447 RILs were derived from a cross between Jindou23 of commercial cultivar as the female parent and Huibuzhi of farm variety from Shanxi Province(ZDD02315) as the male parent that construct SSR genetic linkage map. The parent lines and the RILs were cultivated in summer at Yuanyang testing ground of Academy of Agricultural Sciences, and in Winter at Sanya of Hainan province in 2011, 2012, 2015. A complete random design with two replications was used in this study. Each plot of a single genotype provided 15.00 g big-plump seeds with same size in six environmental conditions. α-tocopherol content was detected quantitatively and qualitatively by High Performance Liquid Chromatography(HPLC). Major gene plus polygene mixed inheritance and QTL mapping for α-tocopherol were detected by major gene plus polygene mixed inheritance analysis and composite interval mapping with WinQTLCart 2.5.【Result】The results showed that α-tocopherol was controlled by four pairs of main genes by major gene plus polygene mixed inheritance analysis. and the four pairs of main genes distributed in two parents. Three main genes shared the same direction with positive additive effect and involved novel alleles from the same parent, Jindou23;one main gene has negative additive effects and donated by Huibuzhi of black beans. Three pairs of genes shared the different direction of positive or negative epistatic effects shared the different direction to α-tocopherol contribution. The phenotypic variation explained by QTL by environment interaction ranged from 0.13 to 4.05%, and indicated that α-tocopherol was significantly affected by four pairs of main genes, more than by environment. Seventeen QTLs for α-tocopherol were mapped on 8 chromosomes 1, 2, 5, 6, 8, 14, 16, and 17, separately;the variatio

关 键 词:大豆 Α-生育酚 主基因+多基因 遗传 QTL 

分 类 号:S565.1[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象