Simulation study of energy resolution with changing pixel size for radon monitor based on Topmetal-Ⅱ^- TPC  被引量:6

Simulation study of energy resolution with changing pixel size for radon monitor based on Topmetal-Ⅱ^- TPC

在线阅读下载全文

作  者:Meng-Yao Huang Hua Pei Xiang-Ming Sun Shu-Guang Zou 

机构地区:[1]Department of Physics and Astronomy, Iowa State University [2]PLAC, Key Laboratory of Quark & Lepton Physics (MOE),Central China Normal University [3]College of Information Science and Engineering, Henan University of Technology

出  处:《Nuclear Science and Techniques》2019年第1期49-57,共9页核技术(英文)

基  金:supported by the National Natural Science Foundation of China(No.U1732271)

摘  要:In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-Ⅱ^- sensors assembled by a 0.35 lm CMOS integrated circuit process.Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signalto-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 lm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 lm pixel size at 1–4σ threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process( ~20 keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 lm at 1–4σ threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-Ⅱ^- sensors assembled by a 0.35 lm CMOS integrated circuit process.Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signalto-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 lm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 lm pixel size at 1–4σ threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process( ~20 keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 lm at 1–4σ threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.

关 键 词:GEANT4 Energy resolution PIXEL size RADON MONITOR Topmetal 

分 类 号:TL81[核科学技术—核技术及应用]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象