检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋艳[1] 滕辰妹 姜金贵[1] SONG Yan;TENG Chen-mei;JIANG Jin-gui(School of Economics and Management,Harbin Engineering University,Harbin 150001,China)
机构地区:[1]哈尔滨工程大学经济管理学院,黑龙江哈尔滨150001
出 处:《运筹与管理》2019年第1期71-78,共8页Operations Research and Management Science
基 金:黑龙江省软科学项目(GC16D104);哈尔滨工程大学校基金项目(HEUCFW170903)
摘 要:为了应对跨区域突发事件过程中受灾点服务差异化需求的问题,建立了应急储备设施点的多级备用覆盖选址决策模型,即一个需求点由多个应急设施提供不同质量水平的服务,并考虑设施繁忙状态下由其他设施点提供服务的状况,使模型更加符合实际应用。首次通过设计分段的染色体编码方式改进NSGA-Ⅱ算法提升运算效率以更好地解决多目标选址决策问题,将改进方法下得到的Pareto解分布与NSGA-Ⅱ算法下的仿真结果进行对比分析,结合设施点的部署策略得到不同的空间布局方案。证明了模型的可行性及改进NSGA-Ⅱ算法在解决设施点多目标选址决策问题时的有效性。In order to deal with the problem of differentiated demand of disaster service in the process of crossregional emergencies,a multi-level reserve coverage decision model of emergency reserve facilities is established,that is,a demand point is provided by different emergency facilities. In the process of modeling,the situation of the service provided by other facilities is considered in the busy state of the facility,which makes the model more practical. For the first time,the NSGA-Ⅱ algorithm is improved by designing the segmented chromosome coding method to improve the operation efficiency to solve the multi-target location decision problem. The Pareto solution distribution obtained under the improved method is compared with the simulation results under the NSGA-Ⅱ algorithm,and the spatial distribution scheme is obtained according to the deployment strategy of the facility. It proves the feasibility of the model and the effectiveness of the improved NSGA-Ⅱ algorithm in solving the multiobjective location decision-making problem. The model can provide a valid basis for the decision-makers to a certain extent.
关 键 词:差异化需求 多级备用覆盖模型 染色体编码 改进NSGA—Ⅱ算法
分 类 号:O224[理学—运筹学与控制论] C934[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117