多媒体网络负面信息数据检测仿真研究  被引量:2

Research on Simulation of Negative Information Data Detection in Multimedia Network

在线阅读下载全文

作  者:岳少博 谢利德 王清河 王晓春 YUE Shao-bo;XIE Li-de;WANG Qing-he;WANG Xiao-chun(Educational Technology Center,Chengde Medical University,Chengde Hebei 067000,China)

机构地区:[1]承德医学院教育技术中心,河北承德067000

出  处:《计算机仿真》2019年第1期226-229,386,共5页Computer Simulation

基  金:承德市科技支撑项目(201802B003)

摘  要:针对当前网络负面信息检测方法存在假阳性率和漏检率较高的问题,提出基于朴素贝叶斯的多媒体网络负面信息数据检测方法。通过FIR滤波法实现负面信息数据检测前的抗干扰滤波,对采集到的多媒体网络信息数据中心流量实行傅里叶变换操作,得到FIR滤波器输入向量。将输入向量设置为平稳向量输入至滤波器,计算滤波器传输函数,获取FIR级联滤波器。对滤波器的抽头系数进行计算,实现媒体网络干扰滤波。利用经FIR滤波器处理过的多媒体网络信息数据流量测试集,构建贝叶斯概率表达式,得到网络中待检测信息数据隶属某类别的概率。根据概率计算式获取负面信息数据检测目标函数,计算目标函数中的先验概率值,并使用先验概率值完成网络负面信息数据检测。仿真结果表明,所提方法可将检测结果的假阳性率控制在5%以下,漏检率约为0.67%。该方法检测率高且漏检率低,与当前相关方法相比具备较强的检测性能。Due to the problems of false positive rate and high missed detection rate in current network negative information detection methods,this paper puts forward a method to detect multimedia network negative information data based on Naive Bayesis proposed. Firstly,the FIR filter method was used to achieve the anti-interference filtering before the negative information data detection,and then the Fourier transform was performed on the collected central flux of multimedia network information data to obtain the input vector of FIR filter. Secondly,the input vector was set as the stationary vector,which was inputted to the filter,and then the filter transfer function was calculated to obtain FIR cascade filter. Thirdly,tap coefficients of the filter were calculated to achieve interference filtering of the media network. Moreover,the test set of multimedia network information data traffic processed by FIR filter was used to construct Bayesian probability expression,so as to obtain the probability that the information data to be detected in the network belonged to a certain category. According to the probabilistic formula,the objective function of negative information data detection was obtained. Finally,the prior probability values in the objective functions were calculated.Thus,the network negative information data detection was completed by using the prior probability value. Simulation results show that the proposed method can control the false positive rate of detection result below 5%. The missed detection rate is about 0.67%. The method has high detection rate and low missed rate,which has stronger detection performance than current methods.

关 键 词:多媒体网络 负面信息数据 检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象