检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李响 崔皓蒙 LI Xiang;CUI Hao-meng(College of Chemieal Engineering,Shihezi University,Shihezi Xinjiang 832000,China;College of Hydraulic Engineering,Shihezi University,Shihezi Xinjiang 832000 China)
机构地区:[1]石河子大学化学化工学院,新疆石河子832000 [2]石河子大学水利建筑工程学院,新疆石河子832000
出 处:《计算机仿真》2019年第1期377-380,共4页Computer Simulation
摘 要:对液压故障进行在线检测,是解决诊断厌氧塘污水处理系统实际应用的有效途径。当前液压故障检测方法是首先将最严重的故障划分出来,然后采用分层聚类算法对液压故障状态进行检测,通过以上步骤,提高了污水处理系统的检测效率,但检测不出污水处理系统液压设备小幅度突变故障和早期缓变故障,针对上述问题,提出基于动态GRNN模型的厌氧塘污水处理系统液压故障在线检测方法。通过传感器设备将厌氧塘污水处理系统关键部位的信号进行采集,获取系统正常运行状态下的数据,根据这些数据训练神经网络故障观测器模型,用训练好的故障观测器模型来获取厌氧塘污水处理系统残差。引入自适应阈值,通过判断残差平方和与相应阈值对比,可判定故障。实验结果表明,所提方法能够快速、有效地检测出污水处理系统液压设备的小幅度突变故障和早期缓变故障,且具有较好的鲁棒性。The online detection for hydraulic fault is an effective way to solve the actual application of anaerobic pond sewage disposal system. This paper presents an online detection method for hydraulic fault in anaerobic pond sewage treatment system based on dynamic GRNN model. Firstly,the signals from key parts of anaerobic pond sewage treatment system were collected by the sensor,and then the data under the normal operating state were obtained.Based on these data,the neural network fault observer model was trained,and then the trained fault observer model was used to obtain the residual error of anaerobic pond sewage treatment system. Moreover,the adaptive threshold was introduced. Finally,the failure can be determined by comparing the residual sum of squares with the corresponding threshold. Simulation results prove that the proposed method can quickly and effectively detect the small-amplitude hit fault and early slow-variation fault from hydraulic equipment of sewage treatment system,which has good robustness.
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.158.12