出 处:《Journal of Energy Chemistry》2019年第1期23-30,共8页能源化学(英文版)
基 金:supported by the National Natural Science Foundation of China (No. 21676300)
摘 要:The bimetallic NiCu/SAPO-11 catalysts were prepared by co-impregnation, sequential impregnation, coprecipitation, and mechanical mixing methods. Powder X-ray diffraction, nitrogen adsorption-desorption,temperature-programmed desorption of ammonia, transmission electron microscopy, temperatureprogrammed reduction of hydrogen, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of the catalysts. The catalytic performance of the catalysts was assessed by the hydroisomerization of n-octane. Results indicated that the conversion of n-octane and selectivity to n-octane isomers were related to the preparation methods of the catalysts. The catalysts with Ni-Cu alloy effectively restrained the hydrogenolysis reaction that decreases the selectivity of isomerization. The catalyst prepared by the mechanical mixing of NiO and CuO hardly formed Ni-Cu alloy, showing obvious hydrogenolysis and low selectivity to n-octane isomers. The unbalance between the metal and acid sites resulted in the low conversion of n-octane and selectivity to n-octane isomers. Among all the catalysts,the catalyst prepared by the co-impregnation method exhibited high catalytic activity and selectivity to n-octane isomers.The bimetallic NiCu/SAPO-11 catalysts were prepared by co-impregnation, sequential impregnation, coprecipitation, and mechanical mixing methods. Powder X-ray diffraction, nitrogen adsorption-desorption,temperature-programmed desorption of ammonia, transmission electron microscopy, temperatureprogrammed reduction of hydrogen, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of the catalysts. The catalytic performance of the catalysts was assessed by the hydroisomerization of n-octane. Results indicated that the conversion of n-octane and selectivity to n-octane isomers were related to the preparation methods of the catalysts. The catalysts with Ni-Cu alloy effectively restrained the hydrogenolysis reaction that decreases the selectivity of isomerization. The catalyst prepared by the mechanical mixing of NiO and CuO hardly formed Ni-Cu alloy, showing obvious hydrogenolysis and low selectivity to n-octane isomers. The unbalance between the metal and acid sites resulted in the low conversion of n-octane and selectivity to n-octane isomers. Among all the catalysts,the catalyst prepared by the co-impregnation method exhibited high catalytic activity and selectivity to n-octane isomers.
关 键 词:Ni-Cu/SAPO-11 BIMETALLIC Preparation method HYDROISOMERIZATION HYDROGENOLYSIS N-OCTANE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...