Effects of d-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel  被引量:10

Effects of d-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel

在线阅读下载全文

作  者:Jin Xu Ru Jia Dongqing Yang Cheng Sun Tingyue Gu 

机构地区:[1]Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University [2]Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences

出  处:《Journal of Materials Science & Technology》2019年第1期109-117,共9页材料科学技术(英文版)

基  金:financially supported by National Natural Science Foundation of China(Grant Nos.51771213 and 51471176)

摘  要:Microbiologically influenced corrosion(MIC) is caused by biofilms such as those of sulfate reducing bacteria(SRB). To mitigate MIC, biocide treatment is often needed. Tetrakis(hydroxymethyl) phosphonium sulfate(THPS) is an environmentally friendly biocide that is often used in the oil and gas industry. However, its prolonged use leads to biocide resistance, leading to dosage escalation. A biocide enhancer can be used to slow down the trend. In recent years, d-amino acids have been investigated as an enhancer for THPS and other biocides. Published works used anaerobic vials and flow devices, which could not reveal the real-time changes of the biocide treatment on corrosion. In this work, it was proven that the biocide enhancement effects of d-Phenylalanine(d-Phe) on THPS against the Desulfovibrio vulgaris biofilm on C1018 carbon steels could be assessed in real time using linear polarization resistance and electrochemical impedance spectroscopy to collaborate sessile cell count, weight loss and pitting depth data. The results showed that 500 ppm(w/w) d-Phe effectively enhanced 80 ppm THPS against MIC by the D. vulgaris(a corrosive SRB) biofilm. The sessile cell count and pit depth were all reduced with the enhancement of d-Phe.Microbiologically influenced corrosion(MIC) is caused by biofilms such as those of sulfate reducing bacteria(SRB). To mitigate MIC, biocide treatment is often needed. Tetrakis(hydroxymethyl) phosphonium sulfate(THPS) is an environmentally friendly biocide that is often used in the oil and gas industry. However, its prolonged use leads to biocide resistance, leading to dosage escalation. A biocide enhancer can be used to slow down the trend. In recent years, d-amino acids have been investigated as an enhancer for THPS and other biocides. Published works used anaerobic vials and flow devices, which could not reveal the real-time changes of the biocide treatment on corrosion. In this work, it was proven that the biocide enhancement effects of d-Phenylalanine(d-Phe) on THPS against the Desulfovibrio vulgaris biofilm on C1018 carbon steels could be assessed in real time using linear polarization resistance and electrochemical impedance spectroscopy to collaborate sessile cell count, weight loss and pitting depth data. The results showed that 500 ppm(w/w) d-Phe effectively enhanced 80 ppm THPS against MIC by the D. vulgaris(a corrosive SRB) biofilm. The sessile cell count and pit depth were all reduced with the enhancement of d-Phe.

关 键 词:D-amino acid THPS SRB Corrosion BIOFILM 

分 类 号:TG[金属学及工艺]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象