机构地区:[1]Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University [2]Department of Nanotechnology and Advanced Materials Engineering, Sejong University [3]Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology [4]Department of Physics, City University of Hong Kong
出 处:《Journal of Materials Science & Technology》2019年第1期118-126,共9页材料科学技术(英文版)
基 金:financially supported by the National Key Research Program of China(No.2016YFB0300501);the Key Research Project of Shandong Province(No.2016GGX102010);the National Natural Science Foundation of China(Nos.51471099,51571132,51511140291 and 51771103)
摘 要:The structure, crystallization kinetics and magnetic property of as-quenched Fe_(73.5)Si_(13.5)B_9Nb_3Cu_1 amorphous ribbon(R0) as well as ribbons after autoclave treatment at 100°C and 150°C(R1 and R2) have been systematically studied by various techniques. With increasing autoclave treatment temperature,the measured structural, kinetic and magnetic parameters of samples increase firstly, i.e. R0 < R1; and then decrease or recover to the as-quenched sample, i.e. R2 < R1 or R2 ≈ R0. These results indicate that the SROs in R1 samples increased by transforming from fcc to bcc structure during the autoclave treatment and that the autoclave treatment can decrease the large radius(r_M) MRO(medium range order),but increase the small rMMRO. The measured structural, thermal and magnetic parameters of R2 sample have a tendency to recover toward as-quenched R0 sample. The thermal and magnetic parameters of samples after solely annealing treatment at higher temperature have no obvious recover phenomenon.The uneven actions of pressure and temperature in autoclave treatment may be helpful for us to search a new method to improve the magnetic properties of Fe-based glasses.The structure, crystallization kinetics and magnetic property of as-quenched Fe_(73.5)Si_(13.5)B_9Nb_3Cu_1 amorphous ribbon(R0) as well as ribbons after autoclave treatment at 100°C and 150°C(R1 and R2) have been systematically studied by various techniques. With increasing autoclave treatment temperature,the measured structural, kinetic and magnetic parameters of samples increase firstly, i.e. R0 < R1; and then decrease or recover to the as-quenched sample, i.e. R2 < R1 or R2 ≈ R0. These results indicate that the SROs in R1 samples increased by transforming from fcc to bcc structure during the autoclave treatment and that the autoclave treatment can decrease the large radius(r_M) MRO(medium range order),but increase the small rMMRO. The measured structural, thermal and magnetic parameters of R2 sample have a tendency to recover toward as-quenched R0 sample. The thermal and magnetic parameters of samples after solely annealing treatment at higher temperature have no obvious recover phenomenon.The uneven actions of pressure and temperature in autoclave treatment may be helpful for us to search a new method to improve the magnetic properties of Fe-based glasses.
关 键 词:SAXS (small-angle X-ray scattering) FE-BASED glass Thermodynamic MAGNETIC ribbon DSC (differential scanning calorimetry)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...