检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences,Xiamen University
出 处:《Acta Mathematica Sinica,English Series》2019年第1期123-134,共12页数学学报(英文版)
基 金:supported in part by the Natural Science Foundation of China(Grant Nos.11731010,11471270&11471271)
摘 要:Suppose that X, Y are two real Banach Spaces. We know that for a standard ε-isometry f : X → Y, the weak stability formula holds and by applying the formula we can induce a closed subspace N of *. In this paper, by using again the weak stability formula, we further show a sufficient and necessary condition for a standard ε-isometry to be stable in assuming that N is w*-closed in Y*.Making use of this result, we improve several known results including Figiel’s theorem in reflexive spaces.We also prove that if, in addition, the space Y is quasi-reflexive and hereditarily indecomposable, then L(f)≡span[f(X)] contains a complemented linear isometric copy of X;Moreover, if X =Y, then for every e-isometry f: X → X, there exists a surjective linear isometry S:X → X such that f-S is uniformly bounded by 2ε on X.Suppose that X, Y are two real Banach Spaces. We know that for a standard ε-isometry f : X → Y, the weak stability formula holds and by applying the formula we can induce a closed subspace N of *. In this paper, by using again the weak stability formula, we further show a sufficient and necessary condition for a standard ε-isometry to be stable in assuming that N is w*-closed in Y*.Making use of this result, we improve several known results including Figiel’s theorem in reflexive spaces.We also prove that if, in addition, the space Y is quasi-reflexive and hereditarily indecomposable, then L(f)≡span[f(X)] contains a complemented linear isometric copy of X; Moreover, if X =Y, then for every e-isometry f: X → X, there exists a surjective linear isometry S:X → X such that f-S is uniformly bounded by 2ε on X.
关 键 词:ε-isometry STABILITY hereditarily INDECOMPOSABLE SPACE quasi-reflexive SPACE BANACH SPACE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157