检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王成伟 郭洪恺 杜天琪[2] 裴永富 WANG Chengwei;GUO Hongkai;DU Tianqi;PEI Yongfu(Department of Fundamental Courses,Beijing Institute of Fashion Technology, Beijing 100029,China;School of Materials Science &Engineering,Beijing Institute of Fashion Technology, Beijing 100029,China)
机构地区:[1]北京服装学院基础教学部,北京100029 [2]北京服装学院材料科学与工程学院,北京100029
出 处:《北京电子科技学院学报》2017年第4期33-38,44,共7页Journal of Beijing Electronic Science And Technology Institute
基 金:北京市教委科技计划一般项目(SQKM201710012009);北京服装学院2016年教育教学改革立项项目(JG-1624);北京服装学院2016年校级精品课程提升工程立项项目(JPTS-1609);北京服装学院2017年本科生科研训练计划项目(NHFz20170()60/005).
摘 要:针对四次Wang-Ball曲线不能改变曲线形状的不足,构造了一组带有2个形状参数α、β的拟四次Wang-Ball基函数,它是四次Wang-Ball基函数的扩展。基于拟四次Wang-Ball基函数定义了带双参数的拟四次Wang-Ball曲线,这种曲线拥有四次Wang-Ball曲线的特性,并且通过调整形状参数,可以改变曲线的形状。当α=0、β=0时,带双参数拟四次Wang-Ball曲线退化成四次Wang-Ball曲线。研究了基函数及曲线的性质,分析了2个形状参数的几何意义,探讨了2条拟四次Wang-Ball曲线拼接时应具备的条件。带双参数的拟四次Wang-Ball曲线缓解了四次Wang-Ball曲线不能改变曲线形状的不足,为曲线造型设计提供了一种实用的方法。In order to solve the problem that the quartic Wang-Ball curve can not change the shape oI the curve,as an extension of the quartic Wang-Ball basis function,a set of quasi quartic Wang-Ball basis functions with double shape parameters is constructed.Based on the quasi quartic Wang-Ball basis functions,the quasi quartic Wang-Ball curves with two teristics of the quartic Wang-Ball curve and the shape parameters are defined,which have the charac of the curves can be changed by adjusting the shape parameters.When α=0 and β=O,the quasi quartic Wang-Ball curve with two parameters is de- generated into the quartic Wang-Ball curve.In this paper,the properties of the basic function and the curve are studied,the geometric meaning of the double shape parameters is analyzed,and the conditions of the two quasi Wang-Ball curves are discussed.The quasi quartic Wang-Ball curves with double shape parameters can alleviate the problem that the quartic Wang-Ball curve can not change the shape of the curve,and this will provide a practical method for curve modeling design.
关 键 词:基函数 形状参数 四次Wang-Ball曲线
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229