智能检索技术在电网调度本体知识库中的应用  被引量:1

Application of intelligent retrieval technology in network dispatching ontology knowledge base

在线阅读下载全文

作  者:汤伟[1] 杨铖[1] TANG Wei;YANG Cheng(China National ,Network Anhui Electric Power Company,Hefei Anhui,230001)

机构地区:[1]国网安徽省电力公司,安徽合肥230001

出  处:《自动化与仪器仪表》2019年第2期193-196,共4页Automation & Instrumentation

摘  要:构建电网调度本体知识库,提高电网信息的智能检索能力和调度能力,提出基于语义本体特征融合和关联映射的电网调度本体知识库构建方法,采用电网资源分布信息重组方法构建电网调度的数据库模型,根据电网资源信息分布的数据结构形式进行语义信息融合,提取电网资源信息的关联规则特征。采用模糊概念集匹配方法进行电网资源调度的本体知识库重构,实现电网资源调度的本体特征自适应优化分配,提高电网调度的均衡性和连通性。在本体知识库中提取电网资源信息分布的属性特征,根据特征提取结果进行模糊聚类,在聚类中心实现电网资源信息准确检索。仿真结果表明,采用该方法进行电网资源调度和检索的查准性较好,信息检索的时间效率较高。The power grid dispatching ontology knowledge base is constructed to improve the intelligent retrieval ability and dispatching ability of power network information. A method of constructing power grid dispatching ontology knowledge base based on semantic ontology feature fusion and correlation mapping is proposed. The database model of power grid dispatching is constructed by using the method of recombination of grid resource distribution information.The semantic information fusion is carried out according to the data structure form of grid resource information distribution,and the association rule feature of power grid resource information is extracted. The fuzzy concept set matching method is used to reconstruct the ontology knowledge base of power grid resource scheduling,and the ontology feature adaptive optimization allocation of power grid resource scheduling is realized. In order to improve the balance and connectivity of power grid dispatching,the attribute feature of power grid resource information distribution is extracted from ontology knowledge base,and the fuzzy clustering is carried out according to the result of feature extraction. The simulation results show that the proposed method is more accurate in power grid resource scheduling and retrieval,and the time efficiency of information retrieval is higher.

关 键 词:电网调度 智能检索 本体知识库 信息融合 属性特征提取 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象