UNCONDITIONALLY SUPERCLOSE ANALYSIS OF A NEW MIXED FINITE ELEMENT METHOD FOR NONLINEAR PARABOLIC EQUATIONS  被引量:2

在线阅读下载全文

作  者:Dongyang Shi Fengna Yan Junjun Wang 

机构地区:[1]School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China

出  处:《Journal of Computational Mathematics》2019年第1期1-17,共17页计算数学(英文)

基  金:Natural Science Foundation of China (Grant Nos.11671369,11271340).

摘  要:This paper develops a framework to deal with the unconditional superclose analysis of nonlinear parabolic equation.Taking the finite dement pair Q11/Q01×Q10 as an example, a new mixed finite element method (FEM)is established and the r-independent superclose results of the original variable u in Hi-norm and the flux variable q=-a(u)■u in L^2- norm are deduced (τ is the temporal partition parameter).A key to our analysis is all error splitting technique,with which the time-discrete and the spatial-discrete systems are constructed,respectively.For the first system,tile boundedness of the temporal errors are obtained.For the second system,the spatial superclose results are presented unconditionally.while the previous literature always only obtain the convergent estimates or require certain time step conditions.Finally,some numerical results are provided to confirm the theoretical analysis,and show the efficiency of the proposed method.

关 键 词:Nonlinear PARABOLIC EQUATION MIXED FEM Time-discrete and spatial-discrete systems τ-independent superelose results 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象