检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何立明[1] 阎广建[1] 王锦地[1] 李小文[1,2]
机构地区:[1]北京师范大学遥感与GIS研究中心 [2]2CenterforRemoteSensing,Dept.ofGeography,BostonUniversity675CommonwealthAvenue,Boston,MA02215,USA))
出 处:《遥感学报》2002年第3期161-167,共7页NATIONAL REMOTE SENSING BULLETIN
基 金:国家九五攀登预选项目 (编号 :95 Y 3 8);国家重点基础研究发展规划项目(编号 :2 0 0 0 0G77900 );美国NASA(编号 :NAG5 72 17);高等学校骨干教师资助计划;中国博士后科学基金资助项目资助
摘 要:发展了一种迭代算法 ,能够利用ATSR 2双角观测同时进行大气校正和反演地表的组分 (植被和土壤 )温度。在算法中 ,全球通用二次方 (QUAD)算法用于进行大气校正 ,LSF模型用于计算等效方向发射率 ,通过迭代的方法 ,同时反演地表组分温度和进行大气校正。结果表明 ,在可接受的范围内 ,土壤温度和植被温度可以被分离开来 ,而且 ,反演出的两个方向发射率的差和经过大气校正后的两个方向亮温的差有很好的相关性。更进一步的敏感性和不确定性分析表明 ,如果利用USM进行分阶段反演 。Precise retrieval of land surface temperature from satellite remotely sensed data need atmospheric correction and a known effective emissivity of the pixel. Various split window algorithms have been used to solve the first problem, but they all need a known surface emissivity. LSF model can calculate the effective emissivity of the nonisothermal and heterogeneous pixel, but the data must be atmospherically corrected when using satellite images. In this paper, we have developed a model based algorithm that can correct the atmosphere effects and retrieve component temperatures using ATSR 2 dual angle observation. In this algorithm, QUAD algorithm is used to perform atmospheric correction, and LSF model is used to calculate the directional effective emissivity , by iteration, atmospheric correction and component temperatures retrieval can be completed synchronously. Good linearity was found between the difference of the directional emissivity and the difference of the directional brightness temperature after atmospheric correction. Although the range of the retrieved component temperatures is large, it is still clear that the component temperatures of vegetation and soil are separated. Further analysis of the uncertainty and sensitivity for the two component temperatures show that if only the most sensitive sample is used in inversion, the results tend to be more robust.
关 键 词:ATSR数据 LSF模型 QUAD算法 组分温度 陆地表面温度 土壤 植被 遥感
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13