检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郗钦文[1]
出 处:《大地测量与地球动力学》2002年第2期7-9,共3页Journal of Geodesy and Geodynamics
摘 要:一些现代引潮位展开的潮波振幅中包含时间项 ,即振幅具有时间依赖性 ,它们不属于完全调和展开。由于潮波振幅的时间依赖性 ,振幅或发散或收敛 ,使得远离起始历元的潮波振幅变得毫无确定意义 ,不仅失去了坐标组合滤波的基础 ,而且使Venedikov调和分析方法的应用出现理论障碍 ,难以为用。按照平差变换理论 ,只有满秩变换 ,才能得到与原观测完全等价的平差结果。Venedikov调和分析方法中的数字滤波过程并非满秩变换 ,自然不能得到完全等价的平差结果。凡是预先采用数字滤波的调和分析方法 。In some recent tidal potentials, the amplitudes of the tidal waves include time terms, it means that the amplitudes are time dependent, so they can not be counted as fully harmonic developments. As the time dependent, the amplitudes of tidal waves are divergent or convergent, it make the amplitudes which are far away from the original epoch become unintelligible. Such amplitudes are no longer suitable for using the coordinate combinations, in the meantime Venedikov's method for tidal harmonic analysis will face a theoretical obstacle and difficulty to use. By the transformation theory of the adjustment, only the full rank transformation could get a full equivalent adjustment result to original observations. The process of digital filtering in Venedikov's method for tidal harmonic analysis is not a full rank transformation. Naturally, it could not get a full equivalent adjustment result. The results of every tidal harmonic analysis method, in which the digital filtering is used as a pre processing, are varies from the filtering transformations.
关 键 词:引潮位 时间依赖性 满秩变换 数字滤波 调和分析 潮波
分 类 号:P312.4[天文地球—固体地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112