检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗公亮[1]
出 处:《冶金自动化》2002年第3期1-4,共4页Metallurgical Industry Automation
摘 要:支撑矢量机的成功引起了人们对核函数方法的兴趣。通过某种非线性变换将输入空间映射到一个高维特征空间 ,如果在其中应用标准的线性算法时 ,其分量间的相互作用仅限于内积 ,则可以利用核函数的技术将这种算法转换为原输入空间里的非线性算法。Fisher判别法和主分量分析法是在模式分类与特征抽取中已经获得广泛应用的传统线性方法 ,近年出现的基于核函数的Fisher判别(KFD)与基于核函数的主分量分析(KPCA)是它们的非线性推广 ,其性能更好 ,适用范围更广 ,灵活性更高 ,是值得关注的应用前景看好的新技术。The appeal of kernel based methods has been arisen in recent years by the success of support vector machines. Any standard linear technique,if applied in an high dimensional feature space resulted from a nonlinear map of the original input space, may be transformed to its nonlinear version in the input space very simply by means of the kernel trick, provided that interactions between the components of the algorithm are limited to dot products. Fisher discriminant and principal component analysis are classical linear techniques widely used in pattern classification and feature extraction. Their corresponding nonlinear versions, the kernel Fisher discriminant(KFD) and kernel principal component analysis(KPCA), have emerged recently with better performance, wider application area and more flexibility, which are new technologies with promising prospects in applications and worthwhile to pay attention to.
关 键 词:核函数 FISHER判别 主分量分析 支撑矢量机
分 类 号:TP311.52[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.36.157