检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈翀伟[1] 陈德钊[1] 叶向群[1] 胡上序[1]
出 处:《高校化学工程学报》2001年第4期351-356,共6页Journal of Chemical Engineering of Chinese Universities
基 金:国家自然科学基金资助项目(编号:20076041).
摘 要:将先验知识与神经元网络相结合,可以提高模型的拟合精度和预测能力。本文将针对三层前馈网与单调性先验知识相结合的问题,分析Joerding的惩罚函数法,提出两种新方法:插值点法和有约束优化方法,并成功地应用于原油实沸点蒸馏曲线的仿真,使网络模型在整体和局部上都更贴近于实际对象。FFN has been widely applied in modeling chemical processes because of its universal approximability. The inclusion of prior knowledge is a means of improving the fit precision and the prediction ability of the modal when trained on sparse and noisy data. As to the three-layer feedforward networks and the prior knowledge of monotonicity constraint, the Joerding's penalty function method is analyzed first. Then two novel methods: interpolation method and constrained optimization method, are proposed. These methods have been applied to modeling the true boiling point curve of the crude oil successfully. The simulation experimental results show that the network models trained by those methods are more close to the actual object in local and whole.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117