超声多普勒血流信号的小波特征提取及分类  被引量:1

Wavelet Feature Extraction and Classification of Doppler Ultrasound Blood Flow Signals

在线阅读下载全文

作  者:张羽[1] 汪源源[1] 王威琪[1] 余建国[1] 

机构地区:[1]复旦大学电子工程系,上海200433

出  处:《生物医学工程学杂志》2002年第2期244-246,255,共4页Journal of Biomedical Engineering

基  金:高等学校骨干教师资助计划 (2 0 0 0 -EA13 7)

摘  要:利用小波变换对超声多普勒血流信号的最大频率曲线进行多尺度分析 ,并从时间 -尺度图上提取出模极大值的变化曲线。将这种方法应用到颈动脉血流的分析中 ,发现 :该曲线对于脑血管床正常和异常的病例具有不同的形态。通过对该曲线进行多项式拟合 ,并将拟合的系数作为非线性变换单元组成的前馈网络 (BP网络 )的输入进行分类 ,临床试用效果良好 ,表明该方法为临床诊断脑血管疾病提供了一个新的依据。The maximum frequency waveform of Doppler ultrasound blood flow signals were analyzed by using a multi-scale wavelet transform. The variation of maximal of wavelet transform modulus under various scales was extracted from the time-scale representation. The novel approach was applied to the analysis of Doppler signals from carotid blood flow. It was found the shape of this variation from cases with normal cerebral vessels differed from those associated with abnormal cases. The curve was fitted by a polynomial, and its coefficient were put into a back-propagation (BP) neural network to make a classification. The clinical experiments showed that this approach got a good performance and could be a new means in the clinical diagnosis of cerebral vascular disease.

关 键 词:超声多普勒 血流信号 小波特征 提取 分类 脑血管疾病 

分 类 号:R312[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象