检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《石油物探》2002年第1期111-114,共4页Geophysical Prospecting For Petroleum
摘 要:研究了有监督学习支持向量网络的的模式识别 ;在统计学习理论的基础上 ,研究了小样本、非线性高维模式识别 ;研究了有监督学习支持向量网络的非线性分类设计 ;设计了非线性优化问题的混合解法。针对油气识别预测的具体问题 ,对特征参数的提取和内积函数的选择进行了深入的研究。该方法能够较好地克服神经网络欠学习或过学习的弊端 ,应用于实际的MT资料 。Pattern recognition of support vector network with supervising learning is studied in this paper. On the basis of statistical learning theory, we studied high-dimension nonlinear pattern recognition with small specimen and design of nonlinear classification of support vector network with supervised learning. A hybrid algorithm for solving nonlinear optimization problem is constructed. To deal with the classification of oil and gas, we studied deeply into the extraction of feature parameters and selection of inner product function. The proposed method can satisfactorily overcome the drawbacks of under or over learning problems of neural network. Desired results have been reached by applying the method to MT data.
关 键 词:支持向量网络 MT资料 模式识别 应用 非线性规划 混合算法 电磁法勘探
分 类 号:P631.325[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222