检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学近代力学系 [2]中国空气动力研究与发展中心
出 处:《应用数学和力学》1991年第8期729-735,共7页Applied Mathematics and Mechanics
基 金:国家自然科学基金资助项目
摘 要:在超声速或高超声速绕流中,一种很严重的脉动压力环境是由激波边界层相互作用引起的激波振荡.这种高强度的振荡激波可能诱发结构共振.因这一现象非常复杂,已发表的文章都采用经验或半经验方法.本文首次从基本流体动力学方程出发,给出了由湍流剪切层引起的激波振荡频率的理论解,得到了振荡频率随气流Mach数M_(∞)和压缩折转角θ的变化规律,计算结果与实验值是相符的.本文为激波振荡导致的气动弹性问题提供了一种有价值的理论方法.One of the more severe fluctuating pressure environments encountered in supersonic or hypersonic flows is the shock wave oscillation driven by interaction of a shock wave with boundary layer. The high intensity oscillating shock wave may induce structure resonance of a high speed vehicle. The research for the shock oscillation used to adopt empirical or semiempirical method because the phenomenon is very complex. In this paper a theoretical solution on shock oscillating frequency due to turbulent shear layer fluctuations has been obtained from basic conservation equations. Moreover, we have attained the regularity of the frequency of oscillating shock varying with incoming flow Mach numbers M∞ and turning angle θ. The calculating results indicate excellent agreement with measurements. This paper has supplied a valuable analytical method to study aeroelastic problems produced by shock wave oscillation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3