检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机学报》2002年第8期845-852,共8页Chinese Journal of Computers
摘 要:提出一种新的基于分类方法的实时个性化推荐方法 .该文首先根据用户访问事务文法生成序列访问事务集 ,用于得到每个用户访问的序列特性并且便于分类器进行分类 .然后利用该事务集训练一个多类分类器 .作者通过推荐引擎得到每个用户的当前访问序列和用户当前请求页面 ,然后把该序列送入分类器中进行分类 ,以得到用户的下面一些可能访问的页面 ,这些推荐页面的地址被附加到用户当前请求的页面的底部由推荐引擎返回以进行推荐 .在这种方法中 ,用户不需要注册信息 ,推荐不打扰用户 ,可以为用户提供实时个性化的服务 .实验表明这种方法是成功的 .To using user path characteristics to provide the personalization recommendation, this paper presents a new approach of real time personalization recommendation based on the classification approach in web usage mining. The sequence access transaction set is generated by the user access transaction grammar defined by this paper. The grammar is educed from the regular grammar and can get the sequence characteristic from the user access transaction and the result can facilitate the classification. The set can be used to train a classifier that can process the multiple classes. The k -nearest neighbor classification approach is chosen. Authors use recommendation engine to identify the active user, his current access sequence, and his next request. The sequence and the next request are input into the trained classifier to get the new possibly accessed web page. The recommendation web page address is annexed to the requested page and it is returned to the user by the engine. Each user is provided personalization web recommendation. Authors' approach does not require the profile information about the user and the recommendation process will not disturb the user. It can provide the real time personalization recommendation and the experiment manifest the approach is successful in speed and precision.
关 键 词:分类方法 WEB站点 实时个性化 信息挖掘 推荐模型 网站
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117