Mean width inequalities for symmetric Wulff shapes  

Mean width inequalities for symmetric Wulff shapes

在线阅读下载全文

作  者:GUO LuJun LENG GangSong 

机构地区:[1]College of Mathematics and Information Science, Henan Normal University [2]Department of Mathematics, Shanghai University

出  处:《Science China Mathematics》2014年第8期1649-1656,共8页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 11271244);Shanghai Leading Academic Discipline Project (Grant No. S30104)

摘  要:We establish the mean width inequalities for symmetric Wulff shapes by a direct approach.We also yield the dual inequality along with the equality conditions.These new inequalities have Barthe’s mean width inequalities for even isotropic measures and its dual form as special cases.We establish the mean width inequalities for symmetric Wulff shapes by a direct approach. We also yield the dual inequality along with the equality conditions. These new inequalities have Barthe's mean width inequalities for even isotropic measures and its dual form as special cases.

关 键 词:isotropic measure Wulff shape mean width Ball-Barthe inequalities 

分 类 号:O181[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象